Home Backend Development Golang Tips and best practices for using RabbitMQ to implement message confirmation and ensure reliability in Golang

Tips and best practices for using RabbitMQ to implement message confirmation and ensure reliability in Golang

Sep 27, 2023 am 10:41 AM
golang rabbitmq reliability

Tips and best practices for using RabbitMQ to implement message confirmation and ensure reliability in Golang

Tips and best practices for using RabbitMQ in Golang to implement message confirmation and ensure reliability

Introduction:
RabbitMQ is an open source message broker platform that is Widely used to build scalable distributed systems. It uses the AMQP protocol as the message transmission protocol, providing a highly reliable message delivery mechanism. When using RabbitMQ, how to ensure the reliability of messages and confirm messages in abnormal situations is an important issue.

This article will introduce the techniques and best practices for using RabbitMQ to implement message confirmation and ensure reliability in Golang, and provide specific code examples.

  1. Acknowledgement mode
    RabbitMQ's acknowledgment mode (Acknowledgement mode) is a mechanism used to ensure that the message has been consumed. In Golang, the confirmation mode can be enabled by setting the confirm mode of the Channel. There are two confirmation modes: normal confirmation mode and transaction mode.

1.1 Normal confirmation mode
When using the normal confirmation mode, after the producer sends a message, it will wait for the Broker to return a confirmation message. If a confirmation message is received, the message was successfully delivered to the queue.

Sample code:

package main

import (
    "fmt"
    "log"

    "github.com/streadway/amqp"
)

func main() {
    // 连接到RabbitMQ服务器
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatal(err)
    }
    defer conn.Close()

    // 创建一个Channel
    ch, err := conn.Channel()
    if err != nil {
        log.Fatal(err)
    }
    defer ch.Close()

    // 启用确认模式
    err = ch.Confirm(false)
    if err != nil {
        log.Fatal(err)
    }

    // 发送一条消息
    err = ch.Publish(
        "",
        "hello",
        false,
        false,
        amqp.Publishing{
            ContentType: "text/plain",
            Body:        []byte("Hello, RabbitMQ!"),
        },
    )
    if err != nil {
        log.Fatal(err)
    }

    // 等待消息确认
    confirm := <-ch.NotifyConfirm()
    if confirm.Ack {
        fmt.Println("消息已成功投递到队列中")
    } else {
        fmt.Println("消息投递失败")
    }
}
Copy after login

1.2 Transaction mode
When using the transaction mode, after the producer sends a batch of messages, it will wait for the Broker to return a transaction confirmation message. If a transaction confirmation message is received, it means that the message has been successfully delivered to the queue.

Sample code:

package main

import (
    "fmt"
    "log"

    "github.com/streadway/amqp"
)

func main() {
    // 连接到RabbitMQ服务器
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatal(err)
    }
    defer conn.Close()

    // 创建一个Channel
    ch, err := conn.Channel()
    if err != nil {
        log.Fatal(err)
    }
    defer ch.Close()

    // 启用事务模式
    err = ch.Tx()
    if err != nil {
        log.Fatal(err)
    }

    // 发送一批消息
    err = ch.Publish(
        "",
        "hello",
        false,
        false,
        amqp.Publishing{
            ContentType: "text/plain",
            Body:        []byte("Hello, RabbitMQ!"),
        },
    )
    if err != nil {
        err = ch.TxRollback()
        if err != nil {
            log.Fatal("回滚失败:", err)
        }
        log.Fatal("消息发送失败:", err)
    }

    // 提交事务
    err = ch.TxCommit()
    if err != nil {
        log.Fatal(err)
    }

    fmt.Println("消息已成功投递到队列中")
}
Copy after login
  1. Persistence
    In order to ensure that the message can be recovered in the event of an exception, the message can be set to persistence. In Golang, this can be achieved by setting the DeliveryMode of the message to 2.

Sample code:

package main

import (
    "fmt"
    "log"

    "github.com/streadway/amqp"
)

func main() {
    // 连接到RabbitMQ服务器
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatal(err)
    }
    defer conn.Close()

    // 创建一个Channel
    ch, err := conn.Channel()
    if err != nil {
        log.Fatal(err)
    }
    defer ch.Close()

    // 发送一条持久化消息
    err = ch.Publish(
        "",
        "hello",
        false,
        false,
        amqp.Publishing{
            ContentType:  "text/plain",
            Body:         []byte("Hello, RabbitMQ!"),
            DeliveryMode: amqp.Persistent,
        },
    )
    if err != nil {
        log.Fatal(err)
    }

    fmt.Println("消息已成功投递到队列中")
}
Copy after login
  1. Consumer confirmation mode
    In order to ensure that the consumer successfully processes the message, the consumer confirmation mode can be started on the consumer side. In Golang, this can be achieved by setting Channel's AutoAck to false and manually calling Delivery's Ack method after the consumer has processed the message.

Sample code:

package main

import (
    "fmt"
    "log"

    "github.com/streadway/amqp"
)

func main() {
    // 连接到RabbitMQ服务器
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatal(err)
    }
    defer conn.Close()

    // 创建一个Channel
    ch, err := conn.Channel()
    if err != nil {
        log.Fatal(err)
    }
    defer ch.Close()

    // 启动消费者确认模式
    err = ch.Qos(
        1,     // 预取数量
        0,     // 预取大小
        false, // 全局设置
    )
    if err != nil {
        log.Fatal(err)
    }

    // 创建一个消费者
    msgs, err := ch.Consume(
        "hello",
        "",
        false, // 禁止自动应答
        false, // 独占队列
        false, // 没有等待
        false, // 没有无效
        nil,   // 参数
    )
    if err != nil {
        log.Fatal(err)
    }

    // 处理消息
    for msg := range msgs {
        fmt.Println("收到消息:", string(msg.Body))

        // 处理完消息后,手动确认
        err = msg.Ack(false)
        if err != nil {
            log.Println(err)
        }
    }
}
Copy after login

Conclusion:
Through the above code examples, you can see how to use RabbitMQ in Golang to implement message confirmation and ensure reliability tips and best practices best practices. For example, by enabling confirmation mode, using persistent messages and consumer confirmation mode, the reliability and stability of message transmission can be improved to ensure that messages can be delivered and processed safely.

It is worth noting that in the actual production environment, the high availability and error handling mechanism of the message queue also need to be considered. These aspects are beyond the scope of this article and readers can further study and explore them.

References:

  • RabbitMQ official documentation: https://www.rabbitmq.com/documentation.html
  • streadway/amqp: https://github .com/streadway/amqp

The above is the detailed content of Tips and best practices for using RabbitMQ to implement message confirmation and ensure reliability in Golang. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1667
14
PHP Tutorial
1273
29
C# Tutorial
1255
24
How to safely read and write files using Golang? How to safely read and write files using Golang? Jun 06, 2024 pm 05:14 PM

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pool for Golang database connection? How to configure connection pool for Golang database connection? Jun 06, 2024 am 11:21 AM

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

How to save JSON data to database in Golang? How to save JSON data to database in Golang? Jun 06, 2024 am 11:24 AM

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

Golang framework vs. Go framework: Comparison of internal architecture and external features Golang framework vs. Go framework: Comparison of internal architecture and external features Jun 06, 2024 pm 12:37 PM

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Golang framework development practical tutorial: FAQs Golang framework development practical tutorial: FAQs Jun 06, 2024 am 11:02 AM

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.

Which libraries in Go are developed by large companies or provided by well-known open source projects? Which libraries in Go are developed by large companies or provided by well-known open source projects? Apr 02, 2025 pm 04:12 PM

Which libraries in Go are developed by large companies or well-known open source projects? When programming in Go, developers often encounter some common needs, ...

Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

See all articles