


Introduction to practical tools and auxiliary libraries for drawing charts in Python
Introduction to practical tools and auxiliary libraries for drawing charts in Python
Introduction:
In the process of data analysis and visualization, drawing charts is an essential step . As a feature-rich programming language, Python has many practical tools and auxiliary libraries that can help us easily draw various types of charts. This article will introduce several commonly used Python chart drawing libraries and provide specific code examples to help readers get started quickly.
- Matplotlib
Matplotlib is one of the most commonly used charting libraries in Python. It can create various types of graphs, including line graphs, scatter plots, bar graphs, pie charts, and more. In addition, Matplotlib can also customize charts, such as adding titles, axis labels, legends, etc.
The following is a sample code for drawing a line chart:
import matplotlib.pyplot as plt # x轴数据 x = [1, 2, 3, 4, 5] # y轴数据 y = [1, 4, 9, 16, 25] # 绘制折线图 plt.plot(x, y) # 添加标题 plt.title("折线图示例") # 添加x轴标签 plt.xlabel("x轴") # 添加y轴标签 plt.ylabel("y轴") # 显示图例 plt.legend(["折线"]) # 显示图表 plt.show()
- Seaborn
Seaborn is a statistical data visualization library based on Matplotlib, which provides some default Chart styles and color palettes make creating beautiful charts easier. Seaborn is commonly used for exploratory data analysis and data visualization.
The following is a sample code for drawing scatter plots and linear regression lines:
import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据 tips = sns.load_dataset("tips") # 绘制散点图 sns.scatterplot(x="total_bill", y="tip", data=tips) # 绘制线性回归线 sns.regplot(x="total_bill", y="tip", data=tips) # 添加标题 plt.title("散点图示例") # 显示图表 plt.show()
- Plotly
Plotly is an interactive chart drawing library that can create Highly customized charts, and supports drawing 3D charts, geographical charts, dynamic charts, etc. Plotly can display charts directly in Jupyter Notebook, and provides free online chart storage and sharing services.
The following is a sample code for drawing 2D and 3D histograms:
import plotly.graph_objects as go # 创建2D柱状图数据 data_2D = [ go.Bar(x=["A", "B", "C"], y=[1, 2, 3]) ] # 创建3D柱状图数据 data_3D = [ go.Bar3d(x=["A", "A", "A", "B", "B", "B", "C", "C", "C"], y=[1, 2, 3, 1, 2, 3, 1, 2, 3], z=[1, 2, 3, 4, 5, 6, 7, 8, 9]) ] # 创建2D柱状图布局 layout_2D = go.Layout(title="2D柱状图示例") # 创建3D柱状图布局 layout_3D = go.Layout(title="3D柱状图示例", scene=dict(zaxis=dict(title="Z轴"))) # 绘制2D柱状图 fig_2D = go.Figure(data=data_2D, layout=layout_2D) fig_2D.show() # 绘制3D柱状图 fig_3D = go.Figure(data=data_3D, layout=layout_3D) fig_3D.show()
Conclusion:
The above introduces several commonly used chart drawing tools and auxiliary libraries in Python. They are Matplotlib, Seaborn and Plotly. With these tools and libraries, we can easily draw various types of charts and customize them. I hope that the introduction and sample code of this article can help readers better use Python for data visualization and analysis.
The above is the detailed content of Introduction to practical tools and auxiliary libraries for drawing charts in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
