Reverse linked list grouping by given size using C++
In this article, we deal with a singly linked list and the task is to reverse the list in groups of k. For example -
Input: 1->2->3->4->5->6->7->8->NULL, K = 3 Output: 3->2->1->6->5->4->8->7->NULL Input: 1->2->3->4->5->6->7->8->NULL, K = 5 Output: 5->4->3->2->1->8
For this problem, one approach that comes to mind is to tail the list and reverse the list when the size of the sublist reaches k and continue.
Methods to find solutions
With this method, we usually iterate through the list and keep a counter to count the number of elements in the sublist. When the counter reaches a count of k, we invert that part.
Example
#include <bits/stdc++.h> using namespace std; class Node { public: int data; Node* next; }; Node* reverse(Node* head, int k) { if (!head) return NULL; Node* curr = head; Node* next = NULL; Node* prev = NULL; int count = 0; while (curr != NULL && count < k) { // we reverse the list till our count is less than k next = curr->next; curr->next = prev; prev = curr; curr = next; count++; } if (next != NULL) // if our link list has not ended we call reverse function again head->next = reverse(next, k); return prev; } void push(Node** head_ref, int new_data) { // function for pushing data in the list Node* new_node = new Node(); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } void printList(Node* node) { // function to print linked list while (node != NULL) { cout << node->data << " "; node = node->next; } cout << "\n"; } int main() { Node* head = NULL; int k = 3; // the given k push(&head, 8); push(&head, 7); push(&head, 6); push(&head, 5); push(&head, 4); push(&head, 3); push(&head, 2); push(&head, 1); cout << "Original list \n"; printList(head); head = reverse(head, k); // this function will return us our new head cout << "New list \n"; printList(head); return (0); }
Output
Original list 1 2 3 4 5 6 7 8 New list 3 2 1 6 5 4 8 7
The time complexity of the above method is O(N), where N is the size of the given list, and This method works recursively. This approach also works for higher constraints.
Explanation of the above code
In this method we will iterate through the array and keep reversing it until our counter variable is less than k. When the counter reaches the value of k, we call another inversion function to connect the last node of this sublist to the first node of the next inverted sublist. This is done recursively.
Conclusion
In this article, we solved the problem of reversing a linked list by groups of a given size using recursion. We also learned a C program to solve this problem and a complete method to solve this problem (Normal). We can write the same program in other languages such as C, java, python and other languages. We hope this article was helpful to you.
The above is the detailed content of Reverse linked list grouping by given size using C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

The readdir function in the Debian system is a system call used to read directory contents and is often used in C programming. This article will explain how to integrate readdir with other tools to enhance its functionality. Method 1: Combining C language program and pipeline First, write a C program to call the readdir function and output the result: #include#include#include#includeintmain(intargc,char*argv[]){DIR*dir;structdirent*entry;if(argc!=2){

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

C language functions include definitions, calls and declarations. Function definition specifies function name, parameters and return type, function body implements functions; function calls execute functions and provide parameters; function declarations inform the compiler of function type. Value pass is used for parameter pass, pay attention to the return type, maintain a consistent code style, and handle errors in functions. Mastering this knowledge can help write elegant, robust C code.

C language functions are reusable code blocks, receive parameters for processing, and return results. It is similar to the Swiss Army Knife, powerful and requires careful use. Functions include elements such as defining formats, parameters, return values, and function bodies. Advanced usage includes function pointers, recursive functions, and callback functions. Common errors are type mismatch and forgetting to declare prototypes. Debugging skills include printing variables and using a debugger. Performance optimization uses inline functions. Function design should follow the principle of single responsibility. Proficiency in C language functions can significantly improve programming efficiency and code quality.
