Table of Contents
Explanation
method
Example
Output
Complexity
in conclusion
Home Backend Development C++ Check if an array can fit into another array by rearranging the elements in the array

Check if an array can fit into another array by rearranging the elements in the array

Sep 13, 2023 pm 06:53 PM
Check array arrangement

Check if an array can fit into another array by rearranging the elements in the array

From the problem description, we can understand that given two arrays, we need to check whether the first array can fit into the second array.

In the real world, there are many situations where we need to check whether an array can fit into another array by rearranging the elements in the array.

For various reasons, the programmer may need to rearrange the items of an array to see if they fit into another array. Memory management in computer programming is one of them. When working with large amounts of data, it is often more efficient to use arrays to store data; however, due to memory limitations, arrays may need to be arranged in a specific way to avoid memory limitations.

Explanation

is translated as:

Explanation

Let's try to decode this problem.

Suppose you have two arrays: array A has size n, and array B has size m, where m is greater than or equal to n. The task is to check if it is possible to rearrange the elements of array A such that array A can be completely contained in array B.

In other words, every element of array A must be present in array B and in the same order as in array A. However, there may be additional elements in array B that are not present in array A.

For example, assume that array A contains elements [3,2,1] and array B contains elements [2, 1, 3, 4, 5]. We can rearrange the elements of array A to get [3, 2, 1], which can then be completely contained in array B, as shown below −

On the other hand, if array A contains elements [1, 2, 3] and array B contains elements [2, 3, 4, 5], we cannot rearrange the elements of array A to completely fit into array B because the array There is no element 1 in B.

So, in this case, a function that checks whether array A can fit into array B by rearranging the elements will return False.

method

Let's decode the entire program into a step-by-step algorithm.

  • Sort these two arrays in ascending order.

  • Compares the elements of two arrays, starting with the first entry of each array.

  • If the element of the smaller array is less than or equal to the corresponding element of the larger array, continue moving to the next element in both arrays.

  • If the elements of the smaller array are larger than the corresponding elements in the larger array, return "false" because the smaller array cannot fit in the larger array.

  • Returns "true" if all items of the smaller array are less than or equal to the corresponding elements in the larger array, because the smaller array can fit into the larger array.

Note− Due to the sorting step, the complexity of this algorithm is O(n log n), where n is the size of the array.

Example

C code implementation: Check whether an array can fit into another array by rearranging the elements in the array

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

bool can_fit(vector<int>& arr_1, vector<int>& arr_2) {

//base case
if(arr_1.size() > arr_2.size())
return false;

   // Sort both arrays
   sort(arr_1.begin(), arr_1.end());
   sort(arr_2.begin(), arr_2.end());
   
   // Check if arr_1 can fit into arr_2
   int i = 0, j = 0;
   while (i < arr_1.size() && j < arr_2.size()) {
      if (arr_1[i] <= arr_2[j]) {
         i++;
         j++;
      } else {
         return false;
      }
   }
   return true;
}

int main() {
   vector<int> A, B;
   A.push_back(2);
   A.push_back(5);
   A.push_back(7);
   A.push_back(9);
   A.push_back(10);
   B.push_back(1);
   B.push_back(3);
   B.push_back(5);
   B.push_back(7);
   B.push_back(9);
   B.push_back(9);
   B.push_back(10);

   // Check whether B can fit into A
   if (can_fit(A, B)) {
      cout << "Array A can fit into array B by rearranging the elements." << endl;
   } else {
      cout << "Array A cannot fit into Array B by rearranging the elements." << endl;
   }
   
   return 0;
}
Copy after login

Output

Array A cannot fit into array B by rearranging the elements.
Copy after login

Complexity

Time complexity: O(n log n), because in this code, we first sort the two arrays and then perform an iteration.

Space complexity: O(n), because we store the elements of two vectors in memory.

in conclusion

In this article, we have tried to explain the method of checking whether an array can fit into another array. Hope this article helps you understand this concept better.

The above is the detailed content of Check if an array can fit into another array by rearranging the elements in the array. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C# vs. C  : Learning Curves and Developer Experience C# vs. C : Learning Curves and Developer Experience Apr 18, 2025 am 12:13 AM

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C   and XML: Exploring the Relationship and Support C and XML: Exploring the Relationship and Support Apr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

What is static analysis in C? What is static analysis in C? Apr 28, 2025 pm 09:09 PM

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

How to use the chrono library in C? How to use the chrono library in C? Apr 28, 2025 pm 10:18 PM

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

Beyond the Hype: Assessing the Relevance of C   Today Beyond the Hype: Assessing the Relevance of C Today Apr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The Future of C  : Adaptations and Innovations The Future of C : Adaptations and Innovations Apr 27, 2025 am 12:25 AM

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C  : Is It Dying or Simply Evolving? C : Is It Dying or Simply Evolving? Apr 24, 2025 am 12:13 AM

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen

See all articles