Table of Contents
Explanation
Example
Home Backend Development C++ C program for mice in the maze - backtracking-2

C program for mice in the maze - backtracking-2

Sep 11, 2023 pm 02:25 PM

The rat in the maze is also a common problem using backtracking. I

A maze is a two-dimensional matrix in which some cells are blocked. One of the cells is the source cell and we have to start from there. Another of these is the destination, the place we must get to. We have to find a path from source to destination without entering any blocked cells. A picture of the unsolved maze is shown below.

迷宫中老鼠的C程序 - 回溯法-2

This is the solution.

迷宫中老鼠的C程序 - 回溯法-2

To solve this puzzle, we first start from the source unit and move in the direction where the path is not blocked. If the path taken leads us to our destination, the puzzle is solved. Otherwise, we will come back and change the direction of the path we are on. We will implement the same logic in code as well.

Input:
maze[][] = {
{0,1,0,1,1},
{0,0,0,0,0},
{1,0,1,0,1},
{0,0,1,0,0},
{1,0,0,1,0}}

Output:
1 0 0 0 0
1 1 1 1 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
Copy after login

Explanation

First, we will make a matrix to represent the maze, the elements of the matrix will be 0 or 1. 1 means blocked cells and 0 means cells we can move. The matrix for the maze shown above is as follows:

0 1 0 1 1
0 0 0 0 0
1 0 1 0 1
0 0 1 0 0
1 0 0 1 0
Copy after login

Now, we will make another matrix of the same dimensions to store the solution. Its elements will also be 0 or 1. 1 will represent the cells in our path and the remaining cells will be 0. The matrix representing the solution is:

1 0 0 0 0
1 1 1 1 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
Copy after login

So, we now have our matrix. Next, we will find the path from the start cell to the target cell, the steps we will take are as follows:

  • Check the current cell, if it is the target cell, then The puzzle is solved.

  • If not, try moving down and see if you can move to the next cell (to move to a cell, it must be empty and not in the path).

  • If you can move to the next cell, continue moving along the path to the next lower cell.

  • If not, try moving to the right. If the right side is blocked or occupied, move up.

  • Similarly, if moving up is not possible, we will simply move to the left cell.

  • If movement is not possible in any of the four directions (down, right, up or left), simply go back and change the current path (backtracking).

So, to summarize, we try to move from the current cell to other cells (down, right, up and left) and if no movement is possible, return and The direction of the path is changed to another cell.

printsolution → This function simply prints the solution matrix.

solvemaze → This is the function that actually implements the backtracking algorithm. First, we check if our cell is the target cell, if so (r==SIZE-1) and (c==SIZE-1). If it's the target cell, our puzzle has been solved. If not, then we check if it is a valid mobile cell. A valid cell must be in the matrix, i.e. the index must be between 0 and SIZE-1, r>=0 && c>=0 && r

Example

#include <iostream>
using namespace std;
#define SIZE 5
//the maze problem
int maze[SIZE][SIZE] = {
   {0,1,0,1,1},
   {0,0,0,0,0},
   {1,0,1,0,1},
   {0,0,1,0,0},
   {1,0,0,1,0}
};
//matrix to store the solution
int solution[SIZE][SIZE];
//function to print the solution matrix
void printsolution() {
   int i,j;
   for(i=0;i<SIZE;i++) {
      for(j=0;j<SIZE;j++) {
         printf("%d\t",solution[i][j]);
      }
      printf("</p><p></p><p>");
   }
}
//function to solve the maze
//using backtracking
int solvemaze(int r, int c) {
   //if destination is reached, maze is solved
   //destination is the last cell(maze[SIZE-1][SIZE-1])
   if((r==SIZE-1) && (c==SIZE-1) {
      solution[r][c] = 1;
      return 1;
   }
   //checking if we can visit in this cell or not
   //the indices of the cell must be in (0,SIZE-1)
   //and solution[r][c] == 0 is making sure that the cell is not already visited
   //maze[r][c] == 0 is making sure that the cell is not blocked
   if(r>=0 && c>=0 && r<SIZE && c<SIZE && solution[r][c] == 0 && maze[r][c] == 0){
      //if safe to visit then visit the cell
      solution[r][c] = 1;
      //going down
      if(solvemaze(r+1, c))
         return 1;
      //going right
      if(solvemaze(r, c+1))
         return 1;
      //going up
      if(solvemaze(r-1, c))
         return 1;
      //going left
      if(solvemaze(r, c-1))
         return 1;
      //backtracking
      solution[r][c] = 0;
      return 0;
   }
   return 0;
}
int main() {
   //making all elements of the solution matrix 0
   int i,j;
   for(i=0; i<SIZE; i++) {
      for(j=0; j<SIZE; j++) {
         solution[i][j] = 0;
      }
   }
   if (solvemaze(0,0))
      printsolution();
   else
      printf("No solution</p><p>");
   return 0;
}
Copy after login

The above is the detailed content of C program for mice in the maze - backtracking-2. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1261
29
C# Tutorial
1234
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The Future of C   and XML: Emerging Trends and Technologies The Future of C and XML: Emerging Trends and Technologies Apr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The Continued Use of C  : Reasons for Its Endurance The Continued Use of C : Reasons for Its Endurance Apr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C   Multithreading and Concurrency: Mastering Parallel Programming C Multithreading and Concurrency: Mastering Parallel Programming Apr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C   and XML: Exploring the Relationship and Support C and XML: Exploring the Relationship and Support Apr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C   Deep Dive: Mastering Memory Management, Pointers, and Templates C Deep Dive: Mastering Memory Management, Pointers, and Templates Apr 07, 2025 am 12:11 AM

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

The C   Community: Resources, Support, and Development The C Community: Resources, Support, and Development Apr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

Modern C   Design Patterns: Building Scalable and Maintainable Software Modern C Design Patterns: Building Scalable and Maintainable Software Apr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

See all articles