


Minimize the string-defined steps required to reach a destination via a given source point
Minimizing the number of steps required by a string to reach a destination from a given source is a common problem in computer science. It involves finding the shortest path from a starting point to a destination point based on a set of directions. In this article, we will discuss how to solve this problem in C, provide an example, and discuss test cases.
Problem Statement
Given a starting point (x, y) and a series of directions (N, S, E, W) on a 2D plane, we need to find the shortest path to the destination point (x', y') starting from the starting point. Each character in the string represents the direction we should move. For example, if the string is "NNSE", then we need to move two steps to the north, one step to the south, and one step to the east. We can only move in the four cardinal directions and not outside the plane.
method
To solve this problem, we need to perform a breadth-first search (BFS) traversal of the two-dimensional plane starting from the starting point. During the traversal, for each visited point, we need to calculate the number of steps required to reach that point. If a target point is encountered during the traversal, we return the number of steps required to reach that point.
Example
The following C code implements the above method.
#include<bits/stdc++.h> using namespace std; int dx[] = {0, 0, -1, 1}; int dy[] = {-1, 1, 0, 0}; int minSteps(string s, int x, int y) { int n = s.size(); int curr_x = 0, curr_y = 0, steps = 0; unordered_map<int, unordered_map<int, bool>> visited; visited[0][0] = true; for(int i = 0; i < n; i++) { char c = s[i]; if(c == 'N') curr_y++; else if(c == 'S') curr_y--; else if(c == 'E') curr_x++; else if(c == 'W') curr_x--; if(visited[curr_x][curr_y]) continue; visited[curr_x][curr_y] = true; steps++; } int dist = abs(x - curr_x) + abs(y - curr_y); return (dist <= steps && (steps - dist) % 2 == 0) ? steps : -1; } int main() { string s = "NNSE"; int x = 2, y = 2; int res = minSteps(s, x, y); if(res == -1) cout << "Destination cannot be reached\n"; else cout << "Minimum steps to reach destination: " << res << "\n"; return 0; }
Output
Destination cannot be reached
The above code accepts a string s representing the direction and the starting point (x, y) as input. We first initialize the current point (curr_x, curr_y) to (0, 0) and the number of steps to reach the current point (steps) to 0. We then create an unordered map to keep track of visited points. We iterate over the string s and update the current point and the number of steps required to reach that point based on the direction given by the current character. We check if the current point has already been visited. If it is, skip it. Otherwise, we mark it as visited and increment the number of steps to reach the current point.
After traversing the string, we calculate the distance between the target point and the current point. If the distance between the target point and the current point is less than or equal to the number of steps taken, and the difference between the number of steps taken and the distance is an even number, then the number of steps taken is returned as the minimum number of steps required to reach the destination. . Otherwise, we return -1, indicating that the destination cannot be reached.
Test case example
Let us consider a sample test case to understand how the above code works -
enter
string s = "NNSE"; int x = 2, y = 2;
In the example test case, the starting point is (0,0) and the direction is "NNSE". The target point is (2,2). However, if we follow the given direction, we will only reach the point (0,2), not the target point. Therefore, the target point (2,2) cannot be reached in the given direction.
in conclusion
In this article, we discussed how to minimize the number of steps required to reach a destination from a given source based on a sequence of directions. We implemented the solution in C using BFS traversal and provided an example to illustrate how the code works. By following the approach discussed in this article, you can efficiently solve similar problems in C.
The above is the detailed content of Minimize the string-defined steps required to reach a destination via a given source point. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron
