Count the number of pairs of strings that differ in only one position
Introduction
Strings consist of alphanumeric characters, each character is associated with a determined position. Character positions range from 0 to the string length. Characters that are completely different in one position are called adjacent characters.
In this article, we will develop a code that takes as input an array of strings that are completely different in one position. Let us see the following example to understand this topic better -
Example
Example 1 - str - {"abc", "cba", "dbc", "acc"}
Output - 2
For example, in the following example, two pairs {"abc", "dbc"} and {"abc", acc"} can be generated. These strings differ in only one character position each.
In this article, we will develop a code that uses mapping to store similar strings and a pattern to get the total number of string pairs. C maps utilize key-value pairs in order to store and retrieve data with constant time complexity.
grammar
substr()
The substr() method is used to access the substring from start to end-1 in a larger string. All indexes to be accessed should be contiguous and ordered.
Parameters -
st - starting position
end - The end position at which substring access is terminated
algorithm
Accepts a string vector, string
Initially maintain a counter to store the count of total pairs that meet the condition.
Maintain two maps to store identical strings and strings that satisfy patterns that preserve wildcards. Let us assume that this mapping is m1.
Maintain another map to store similar strings. Let us assume that this mapping is m2.
Perform iteration over the input array.
Every time a similar type of string is observed, its corresponding count in the m2 map will be incremented
Substrings are created by replacing individual characters of the string with wildcard characters
Every time a similar type of pattern is observed, the corresponding count in the m1 graph is incremented
Compute the sum of string pairs observed in m1 and m2 respectively.
Use these summed values to increment the count.
Example
The following C code snippet is used to take an array of strings as input and count the total number of pairs that differ in only one position -
//including the required libraries #include <bits/stdc++.h> using namespace std; // Function to return the count of same pairs int countPairs(map<string, int> &d) { //maintaining the count int sum = 0; for (auto i : d) sum += (i.second * (i.second - 1)) / 2; return sum; } //called method to calculate strings differing by one character void chardiff(vector<string> &array, int len , int n ) { //count to store pairs int cnt = 0; //storing strings with wildcard characters map<string, int> pattern; //storing equivalent strings map<string, int> similar; //iterating over the array for (auto str : array) { //if two strings are same , increment the count similar[str]+= 1; // Iterating on a single string for (int i = 0; i < len ; i++) { // Adding special symbol to the string string first = str.substr(0, i); string second = str.substr(i + 1); string temp = first + "//" + second ; //incrementing if similar pattern pattern[temp]+=1; } } // Return counted pairs - equal pairs int chnged = countPairs(pattern); int sim = countPairs(similar); cnt = chnged - sim * len; cout << "The count of pairs satisfying the condition are : " << cnt; } //calling the main method int main() { int n = 4, len = 3; //getting a vector of strings to process vector<string> strings = {"get","set","bet","bat"}; cout << "Vector of strings : " << "\n" ; for(auto s : strings){ cout << s <<"\n"; } //one character different chardiff(strings, len , n ); return 0; }
Output
Vector of strings − get set bet bat The count of pairs satisfying the condition are − 4
in conclusion
Maps simulates the process of record insertion and update with O(1) time complexity. The substring method in C can be used to access the characters of a string in order between specified indices. The product of n and n-1 divided by 2 gives the sum of any number of pairs.
The above is the detailed content of Count the number of pairs of strings that differ in only one position. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.
