How to evaluate a blockchain implemented in JavaScript?
Blockchain is a blockchain containing information. In 2009, this technology was later adopted by Satoshi Nakamoto to create the digital cryptocurrency Bitcoin. This is completely open to anyone who wants to develop or analyze. One thing about this technology is that once certain data is recorded in the blockchain, changing it becomes very complicated. The following are some terms used for evaluation in blockchain programs.
- Block
- A block in the blockchain contains information such as data, hash value, and previous block hash value.
- Data
- This data completely depends on the type of block, for example cryptocurrencies have information such as who the transaction came from, who the transaction was to, and the transaction volume. Coins have been traded.
- Hash
- This is a unique string ID, just like Aadhar number, it can be used to locate the details of a person, just like this hash is used to identify blocks Details are the same. Once a block is created, its hash is created. Changing the block hash is easily identifiable. Once a block hash changes, it is no longer the same block.
- Previous Hash
- This is the hash of the previous block and is used to connect or create a chain of blocks.
In the above image, you can observe that the previous hash has the hash of the previous block. The first block is also called the genesis block because it cannot point to the previous block. If you change the hash, the next block with the previous hash will be invalid due to the change.
The package we will use is
crypto.js.This is a JavaScript library that provides encryption algorithms and functions. It can be used to perform various cryptographic operations such as hashing, encryption, decryption, and key generation in a web browser or in a server-side JavaScript environment such as Node.js. This library is widely used in web applications to provide secure communication, data protection, and user authentication. For example, it can be used to encrypt sensitive data before sending it over the Internet, or to generate secure password hashes for user authentication.
Let us understand through a program that uses Crypto.JS library for hashing and proof of work.
There are two classes Block and Blockchain.
class Block{ constructor(prev_hashValue, data){ this.data=data; this.hash=this.calculateHash(); this.prev_hashValue=prev_hashValue; this.time_stamp= new Date(); this.pf_work=0; } }
Block class has five attributes -
- data
- This will store the data in blocks.
- hash
- This will store the hash of the block by calling the calculateHash method.
- prev_hashValue
- This will store the hash value of the previous block.
- time_stamp
- The timestamp will contain the time the block was created.
- pf_work
- A number that is incremented during mining.
Block class contains two methods -
calculateHash(){ return SHA256(this.pf_work + this.prev_hashValue + this.timestamp + JSON.stringify(this.data)).toString(); }
This function will calculate the hash value of the block by concatenating pf_work, prev_hashValue time_stamp and data and passing it to the
SHA256 hash function using the CryptoJS library.
mine(difficulty){
while(!this.hash.startsWith("0".repeat(difficulty))){
this.pf_work++;
this.hash=this.calculateHash();
}
}
class Blockchain{ constructor(){ let genesisBlock=new Block("0", {isGenesisBlock: true}); this.chain=[genesisBlock]; } }
- This is an array of Block objects that form a chain of blocks. The blockchain class has two methods -
addNewBlock(data){ let lastBlock=this.chain[this.chain.length-1]; let newBlock=new Block(lastBlock.hash, data); newBlock.mine(2); //find a hash for new block this.chain.push(newBlock); }
This method creates a new Block object, the data in it is passed as a parameter, and mines are used to find a valid hash value and add it to the chain array.
isValid_hash(){ for(let i=1; i<this.chain.length; i++){ const currentBlock=this.chain[i]; const previousBlock=this.chain[i-1]; if(currentBlock.hash!=currentBlock.calculateHash()) return false; if(currentBlock.prev_hashValue!=previousBlock.hash) return false; } return true; }
This method checks the validity of the blockchain by iterating through each block in the chain array and verifying that its hash properties match the calculated hash value.
let blockchain=new Blockchain(); blockchain.addNewBlock({ from: "joe", to:"Juhi", amount: 100, }); blockchain.addNewBlock({ from: "martin", to: "Genny", amount: 150, });
Here an object will be created using two blocks, which will have properties of the blockchain class.
This implementation can be used as a starting point for building more complex blockchain applications that require secure and immutable data storage. But it should be noted that this is only a basic implementation, and a fully functional blockchain system also requires many additional functions, such as transaction verification, consensus mechanisms, and security measures.
Example: Complete Code
Blockchain.js
const SHA256 = require('crypto-js/sha256');
class Block{
constructor(prev_hashValue, data){
this.data=data;
this.hash=this.calculateHash();
this.prev_hashValue=prev_hashValue;
this.time_stamp= new Date();
this.pf_work=0;
}
calculateHash(){
return SHA256(this.pf_work + this.prev_hashValue + this.time_stamp + JSON.stringify(this.data)).toString();
}
mine(difficulty){
while(!this.hash.startsWith("0".repeat(difficulty))){
this.pf_work++;
this.hash=this.calculateHash();
}
}
}
class Blockchain{
constructor(){
let genesisBlock=new Block("0", {isGenesisBlock: true});
this.chain=[genesisBlock];
}
addNewBlock(data){
let lastBlock=this.chain[this.chain.length-1];
let newBlock=new Block(lastBlock.hash, data);
newBlock.mine(2); //find a hash for new block
this.chain.push(newBlock);
}
isValid_hash(){
for(let i=1; i<this.chain.length; i++){
const currentBlock=this.chain[i];
const previousBlock=this.chain[i-1];
if(currentBlock.hash!=currentBlock.calculateHash()) return false;
if(currentBlock.prev_hashValue!=previousBlock.hash) return false;
}
return true;
}
}
//test
let blockchain=new Blockchain();
blockchain.addNewBlock({
from: "joe",
to:"Juhi",
amount: 100,
});
blockchain.addNewBlock({
from: "martin",
to: "Genny",
amount: 150,
});
console.log(blockchain);
console.log("Blockchain is valid: "+blockchain.isValid_hash());
npm install crypto-js
Then compile the JavaScript program file. Here, the filename is blockchain.
node blockchain.js
Output
The above is the detailed content of How to evaluate a blockchain implemented in JavaScript?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Learning JavaScript is not difficult, but it is challenging. 1) Understand basic concepts such as variables, data types, functions, etc. 2) Master asynchronous programming and implement it through event loops. 3) Use DOM operations and Promise to handle asynchronous requests. 4) Avoid common mistakes and use debugging techniques. 5) Optimize performance and follow best practices.

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

Data update problems in zustand asynchronous operations. When using the zustand state management library, you often encounter the problem of data updates that cause asynchronous operations to be untimely. �...
