


C++ Maximum subset where the sum of each pair of elements is a prime number
Find the largest subset from the given array where the sum of each pair of elements is a prime number. Suppose the maximum element is 100000, for example -
Input: nums[ ] = { 3, 2, 1,1 } Output: size = 3, subset = { 2, 1, 1 } Explanation: Subsets can be formed: {3, 2}, {2, 1} and { 2, 1, 1}, In {2, 1, 1} sum of pair (2,1) is 3 which is prime, and the sum of pairs (1,1) is 2 which is also a prime number. Input: nums[ ] = {1, 4, 3, 2} Output: size = 2, subset = {1, 4} Explanation: subset can be formed: {1, 4}, {4, 3}, and {3, 2} All are of size 2 so we can take any subset like 1 + 4 =5 which is a prime number.
Methods to find the solution
First, to determine if the pair of numbers is prime, we need to check if their sum is odd or even, because except Except for 2, no even number is prime. Moreover, if both numbers are odd or even, their sum may be even.
In this problem, we will take three numbers, x, y and z, any two of them should be odd or even. We will then check if this subset contains pairs of prime numbers and sums, which may be possible if:
The subset contains some numbers of 1 and some other numbers where NUM 1 should be a prime number.
Or if the subset contains only two numbers, their sum is a prime number.
Example
#include <bits/stdc++.h> using namespace std; #define M 100001 bool check_prime[M] = { 0 }; int sieve_of_eratosthenes(){ for (int p = 2; p * p < M; p++){ // If it is not marked then mark if (check_prime[p] == 0){ // Update all multiples of p for (int i = p * 2; i < M; i += p) check_prime[i] = 1; } } return 0; } int main(){ sieve_of_eratosthenes(); int nums[] = { 3, 2, 1, 1}; int n = sizeof(nums) / sizeof(nums[0]); int ones = 0; for (int i = 0; i < n; i++) if (nums[i] == 1) ones++; // If ones are present and // elements greater than 0 are also present if (ones > 0){ for (int i = 0; i < n; i++){ //checking whether num + 1 is prime or not if ((nums[i] != 1) and (check_prime[nums[i] + 1] == 0)){ cout << ones + 1 << endl; // printing all the ones present with nums[i] for (int j = 0; j < ones; j++) cout << 1 << " "; cout << nums[i] << endl; return 0; } } } // If subsets contains only 1's if (ones >= 2){ cout << ones << endl; for (int i = 0; i < ones; i++) cout << 1 << " "; cout << endl; return 0; } // If no ones are present. for (int i = 0; i < n; i++){ for (int j = i + 1; j < n; j++){ // searching for pair of integer having sum prime. if (check_prime[nums[i] + nums[j]] == 0){ cout << 2 << endl; cout << nums[i] << " " << nums[j] << endl; return 0; } } } // If only one element is present in the array. cout << -1 << endl; return 0; }
Output
3 1 1 2
Description of the above code
First we check the individual number.
- If greater than 0, iterate through the array and check whether each element except 1 is nums[i] 1 is a prime number; if so, print the total number of (ones 1) as a sub The size of the set and all 1's with that number.
If the given array contains only 1, print all of them because the sum of all pairs will be 2 (prime number).
If no one is present, check that the sum of each pair in the array is prime.
Else print -1.
Conclusion
In this tutorial, we discussed a problem where we need to find the largest subset from a given array where the sum of each pair is Prime number. We discussed a way to solve this problem with the help of the Sieve of Eratosthenes and check the number in the array. We also discussed a C program to solve this problem and we can implement it using programming languages like C, Java, Python etc. We hope you found this tutorial helpful.
The above is the detailed content of C++ Maximum subset where the sum of each pair of elements is a prime number. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen
