Table of Contents
usage instructions
Method 1: Find the transpose of a matrix using Numpy
Example
Output
Method 2: Find the inverse of a matrix using Numpy
Method 3: Multiplying matrices and vectors
Method 4: Use the numpy.linalg subpackage to obtain the determinant of the matrix
The fifth way to find eigenvalues ​​using numpy.linalg
Method 6: Use numpy.linalg to solve equations
in conclusion
Home Backend Development Python Tutorial Matrix and linear algebra calculations in Python

Matrix and linear algebra calculations in Python

Aug 20, 2023 pm 05:41 PM
python linear algebra Matrix calculation

Matrix and linear algebra calculations in Python

In this article, we will learn how to use Python to perform matrix and linear algebra calculations, such as matrix multiplication, finding determinants, solving linear equations, etc.

You can use a matrix object from the NumPy library to achieve this. When doing calculations, matrices are relatively comparable to array objects.

Linear algebra is a vast subject and beyond the scope of this article.

However, if you need to manipulate matrices and vectors, NumPy is a good starting point.

usage instructions

  • Find the transpose of a matrix using Numpy

  • Find the inverse of a matrix using Numpy

  • Matrix and vector multiplication

  • Use the numpy.linalg subpackage to obtain the determinant of the matrix

  • Use numpy.linalg to find eigenvalues

  • Use numpy.linalg to solve equations

Method 1: Find the transpose of a matrix using Numpy

numpy.matrix.T Properties − Returns the transpose of the given matrix.

The Chinese translation of

Example

is:

Example

The following program uses the numpy.matrix.T property to return the transpose of the matrix −

# importing NumPy module
import numpy as np

# input matrix
inputMatrix = np.matrix([[6, 1, 5], [2, 0, 8], [1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)

# printing the transpose of an input matrix
# by applying the .T attribute of the NumPy matrix of the numpy Module
print("Transpose of an input matrix\n", inputMatrix.T)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
Transpose of an input matrix
 [[6 2 1]
 [1 0 4]
 [5 8 3]]
Copy after login

Method 2: Find the inverse of a matrix using Numpy

numpy.matrix.I Properties - Returns the inverse of the given matrix.

The Chinese translation of

Example

is:

Example

The following program uses the numpy.matrix.I property to return the inverse of the matrix −

# importing NumPy module 
import numpy as np

# input matrix 
inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)

# printing the inverse of an input matrix 
# by applying the .I attribute of the NumPy matrix of the numpy Module
print("Inverse of an input matrix:\n", inputMatrix.I)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
Inverse of an input matrix:
 [[ 0.21333333 -0.11333333 -0.05333333]
 [-0.01333333 -0.08666667  0.25333333]
 [-0.05333333  0.15333333  0.01333333]]
Copy after login

Method 3: Multiplying matrices and vectors

The Chinese translation of

Example

is:

Example

The following program uses the * operator to return the product of the input matrix and vector -

# importing numpy module 
import numpy as np
 
# input matrix 
inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)

# creating a vector using numpy.matrix() function 
inputVector = np.matrix([[1],[3],[5]])

# printing the multiplication of the input matrix and vector 
print("Multiplication of input matrix and vector:\n", inputMatrix*inputVector)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
Multiplication of input matrix and vector:
 [[34]
 [42]
 [28]]
Copy after login

Method 4: Use the numpy.linalg subpackage to obtain the determinant of the matrix

numpy.linalg.det() Function − Calculate the determinant of a square matrix.

The Chinese translation of

Example

is:

Example

The following program uses the numpy.linalg.det() function to return the determinant of the matrix −

# importing numpy module 
import numpy as np
 
# input matrix 
inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)

# getting the determinant of an input matrix 
outputDet = np.linalg.det(inputMatrix)

# printing the determinant of an input matrix 
print("Determinant of an input matrix:\n", outputDet)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
Determinant of an input matrix:
 -149.99999999999997
Copy after login

The fifth way to find eigenvalues ​​using numpy.linalg

numpy.linalg.eigvals() function − Calculate the eigenvalues ​​and right eigenvectors of the specified square matrix/matrix.

The Chinese translation of

Example

is:

Example

The following program returns the Eigenvalues ​​of an input matrix using the numpy.linalg.eigvals() function −

# importing NumPy module 
import numpy as np
 
# input matrix 
inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)
 
# getting Eigenvalues of an input matrix 
eigenValues = np.linalg.eigvals(inputMatrix)
 
# printing Eigenvalues of an input matrix 
print("Eigenvalues of an input matrix:\n", eigenValues)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
Eigenvalues of an input matrix:
 [ 9.55480959  3.69447805 -4.24928765]
Copy after login

Method 6: Use numpy.linalg to solve equations

We can solve a problem similar to finding the value of X for A*X = B,

Where A is a matrix and B is a vector.

The Chinese translation of

Example

is:

Example

The following is a program that uses the solve() function to return the x value-

# importing NumPy module 
import numpy as np
 
# input matrix 
inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]])
# printing the input matrix
print("Input Matrix:\n", inputMatrix)
 
# creating a vector using np.matrix() function 
inputVector = np.matrix([[1],[3],[5]])
 
# getting the value of x in an equation inputMatrix * x = inputVector
x_value = np.linalg.solve(inputMatrix, inputVector)
 
# printing x value
print("x value:\n", x_value)
 
# multiplying input matrix with x values 
print("Multiplication of input matrix with x values:\n", inputMatrix * x_value)
Copy after login

Output

When executed, the above program will generate the following output -

Input Matrix:
 [[6 1 5]
 [2 0 8]
 [1 4 3]]
x value:
 [[-0.39333333]
 [ 0.99333333]
 [ 0.47333333]]
Multiplication of input matrix with x values:
 [[1.]
 [3.]
 [5.]]
Copy after login

in conclusion

In this article, we learned how to perform matrix and linear algebra operations using the NumPy module in Python. We learned how to calculate the transpose, inverse, and determinant of a matrix. We also learned how to do some calculations in linear algebra, such as solving equations and determining eigenvalues.

The above is the detailed content of Matrix and linear algebra calculations in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1269
29
C# Tutorial
1249
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles