Home Database Redis Using Java and Redis to build a distributed recommendation system: how to personalize recommended products

Using Java and Redis to build a distributed recommendation system: how to personalize recommended products

Aug 01, 2023 pm 12:03 PM
java redis distributed

Building a distributed recommendation system using Java and Redis: How to recommend products personalizedly

Introduction:
With the development of the Internet, personalized recommendations have become indispensable in e-commerce and social media platforms One of the functions. Building an efficient and accurate personalized recommendation system is very important to improve user experience and promote sales. This article will introduce how to use Java and Redis to build a distributed personalized recommendation system, and provide code examples.

1. Basic principles of recommendation system
Personalized recommendation system provides users with personalized recommendation results based on the user’s historical behavior, interests, preferences and other information. Recommendation systems are generally divided into two categories: collaborative filtering recommendations and content recommendations.

1.1 Collaborative filtering recommendation
Collaborative filtering recommendation is a method of recommending based on the similarity of users or items. Among them, user collaborative filtering recommendation calculates the similarity based on the user's rating of the item, while item collaborative filtering recommendation calculates the similarity based on the user's historical behavior.

1.2 Content recommendation
Content recommendation is a method of recommending based on the attributes of the item itself. By analyzing and matching the tags and keywords of items, we recommend items that match the user's preferences.

2. Combination of Java and Redis
As a popular programming language, Java is widely used to develop various applications. Redis is a high-performance in-memory database suitable for storing and querying data in recommendation systems.

2.1 Redis installation and configuration
First, you need to install Redis locally or on the server and perform related configurations. You can visit the Redis official website (https://redis.io) for detailed installation and configuration instructions.

2.2 Connection between Java and Redis
When using Redis in Java, you can use Jedis as the client library of Redis. You can use Jedis by adding the following dependencies through maven:

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>3.5.2</version>
</dependency>
Copy after login

Next, you can use the following code to connect to the Redis server:

Jedis jedis = new Jedis("localhost", 6379);
Copy after login

3. Build a personalized recommendation system
To demonstrate how For personalized product recommendation, we will take user collaborative filtering recommendation as an example to introduce the specific implementation steps.

3.1 Data preparation
First, we need to prepare the data required by the recommendation system. Generally speaking, data is divided into user data and item data. User data includes user ID, historical behavior and other information; item data includes item ID, item attributes and other information.

To store user data and item data in Redis, you can use the following code example:

// 存储用户数据
jedis.hset("user:1", "name", "张三");
jedis.hset("user:1", "age", "30");
// 存储物品数据
jedis.hset("item:1", "name", "商品1");
jedis.hset("item:1", "price", "100");
Copy after login

3.2 Calculate user similarity
According to the user's historical behavior, you can calculate the similarity between users Similarity. Similarity can be calculated using algorithms such as Jaccard similarity or cosine similarity.

The following is a code example that uses cosine similarity to calculate user similarity:

// 计算用户相似度
public double getUserSimilarity(String user1Id, String user2Id) {
    Map<String, Double> user1Vector = getUserVector(user1Id);
    Map<String, Double> user2Vector = getUserVector(user2Id);
    
    // 计算向量点积
    double dotProduct = 0;
    for (String itemId : user1Vector.keySet()) {
        if (user2Vector.containsKey(itemId)) {
            dotProduct += user1Vector.get(itemId) * user2Vector.get(itemId);
        }
    }
    
    // 计算向量长度
    double user1Length = Math.sqrt(user1Vector.values().stream()
                                      .mapToDouble(v -> v * v)
                                      .sum());
    double user2Length = Math.sqrt(user2Vector.values().stream()
                                      .mapToDouble(v -> v * v)
                                      .sum());
    
    // 计算相似度
    return dotProduct / (user1Length * user2Length);
}

// 获取用户向量
public Map<String, Double> getUserVector(String userId) {
    Map<String, Double> userVector = new HashMap<>();
    
    // 查询用户历史行为,构建用户向量
    Set<String> itemIds = jedis.smembers("user:" + userId + ":items");
    for (String itemId : itemIds) {
        String rating = jedis.hget("user:" + userId + ":ratings", itemId);
        userVector.put(itemId, Double.parseDouble(rating));
    }
    
    return userVector;
}
Copy after login

3.3 Personalized recommendation
Based on the user's historical behavior and similarity, similar users can be recommended to the user Items of interest. The following is a code example of personalized recommendation:

// 个性化推荐
public List<String> recommendItems(String userId) {
    Map<String, Double> userVector = getUserVector(userId);
    List<String> recommendedItems = new ArrayList<>();
    
    // 根据用户相似度进行推荐
    for (String similarUser : jedis.zrangeByScore("user:" + userId + ":similarity", 0, 1)) {
        Set<String> itemIds = jedis.smembers("user:" + similarUser + ":items");
        for (String itemId : itemIds) {
            if (!userVector.containsKey(itemId)) {
                recommendedItems.add(itemId);
            }
        }
    }
    
    return recommendedItems;
}
Copy after login

IV. Summary
This article introduces how to use Java and Redis to build a distributed personalized recommendation system. By demonstrating the implementation steps of user collaborative filtering recommendations and providing relevant code examples, it can provide some reference for readers to understand and practice personalized recommendation systems.

Of course, personalized recommendations involve more algorithms and technologies, such as matrix decomposition, deep learning, etc. Readers can make appropriate optimization and expansion based on actual needs and business scenarios.

The above is the detailed content of Using Java and Redis to build a distributed recommendation system: how to personalize recommended products. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP: A Key Language for Web Development PHP: A Key Language for Web Development Apr 13, 2025 am 12:08 AM

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP vs. Other Languages: A Comparison PHP vs. Other Languages: A Comparison Apr 13, 2025 am 12:19 AM

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP vs. Python: Core Features and Functionality PHP vs. Python: Core Features and Functionality Apr 13, 2025 am 12:16 AM

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

How to configure Lua script execution time in centos redis How to configure Lua script execution time in centos redis Apr 14, 2025 pm 02:12 PM

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

PHP's Impact: Web Development and Beyond PHP's Impact: Web Development and Beyond Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP vs. Python: Use Cases and Applications PHP vs. Python: Use Cases and Applications Apr 17, 2025 am 12:23 AM

PHP is suitable for web development and content management systems, and Python is suitable for data science, machine learning and automation scripts. 1.PHP performs well in building fast and scalable websites and applications and is commonly used in CMS such as WordPress. 2. Python has performed outstandingly in the fields of data science and machine learning, with rich libraries such as NumPy and TensorFlow.

How to optimize the performance of debian readdir How to optimize the performance of debian readdir Apr 13, 2025 am 08:48 AM

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

How to configure slow query log in centos redis How to configure slow query log in centos redis Apr 14, 2025 pm 04:54 PM

Enable Redis slow query logs on CentOS system to improve performance diagnostic efficiency. The following steps will guide you through the configuration: Step 1: Locate and edit the Redis configuration file First, find the Redis configuration file, usually located in /etc/redis/redis.conf. Open the configuration file with the following command: sudovi/etc/redis/redis.conf Step 2: Adjust the slow query log parameters in the configuration file, find and modify the following parameters: #slow query threshold (ms)slowlog-log-slower-than10000#Maximum number of entries for slow query log slowlog-max-len

See all articles