


Developing with MySQL and Fortran: How to implement data science computing functions
Developing using MySQL and Fortran: How to implement data science computing functions
In the field of data science, computing and analyzing large amounts of data is crucial. In order to achieve efficient data science computing functions, we can use MySQL and Fortran languages in combination. MySQL is a popular relational database management system, and Fortran is a high-performance scientific computing language. By combining the two, we can use the data storage and management capabilities of MySQL and the efficient numerical computing capabilities of Fortran to complete various data science tasks.
Below we will introduce how to use MySQL and Fortran for data science calculations, and provide some code examples for reference.
First, we need to create a MySQL database and create a table in it to store our data. Suppose we want to process a data set containing students' names, ages, and grades. We can use the following SQL statement to create a table named "students":
CREATE TABLE students ( id INT PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), age INT, score DECIMAL(5,2) );
Next, we can use Fortran to write a program to Connect to a MySQL database and read data into a Fortran program for calculations. The following is a simple Fortran program example:
PROGRAM data_analysis USE mysql, ONLY: MYSQL_TYPE, MYSQL_ATTR, MYSQL_STMT, mysql_init, & mysql_stmt_init, mysql_fetch, MySQL_Query, MySQL_Prepare, MySQL_Stmt_Close, & mysql_real_connect, mysql_options, mysql_stmt_store_result IMPLICIT NONE INTEGER :: ierr, nrow, ncol, i CHARACTER(len=1024) :: hostname, username, password, dbname CHARACTER(len=100) :: query REAL, ALLOCATABLE :: data(:,:) TYPE(MYSQL_STMT) :: stmt TYPE(MYSQL_RES) :: result ! 连接到MySQL数据库 CALL mysql_init(stmt) dbname = "your_database_name" CALL mysql_real_connect(stmt, 'localhost', 'your_username', 'your_password', dbname, 0, C_NULL, 0) ! 执行查询语句 query = "SELECT * FROM students" CALL MySQL_Query(stmt, TRIM(query), LEN(TRIM(query))) ! 获取结果集 CALL mysql_store_result(stmt) nrow = mysql_num_rows(stmt) ncol = mysql_num_fields(stmt) IALLOCATE(data(nrow, ncol)) ! 从结果集中读取数据 DO i = 1, nrow CALL mysql_fetch(stmt) CALL mysql_stmt_fetch(stmt, ncol, data(i,:)) END DO ! 关闭MySQL连接 CALL mysql_stmt_close(stmt) CALL mysql_close(stmt) ! 在Fortran程序中进行数据科学计算 ! 这里可以编写任意的计算代码,例如计算平均成绩等 DEALLOCATE(data) END PROGRAM data_analysis
In this example, we first initialize a MySQL_STMT type variable stmt, and then call the mysql_real_connect function to connect to the MySQL database. Next, we executed a query statement to obtain the data for all students and read the result set into a Fortran data array. Finally, we can perform any data science calculations in Fortran programs, such as calculating average grades, etc.
By using the combination of MySQL and Fortran, we can easily perform data science calculations and make full use of MySQL's data storage and management capabilities and Fortran's efficient numerical computing capabilities. I hope this article will be helpful to readers who want to use MySQL and Fortran to develop data science computing functions.
The above is the detailed content of Developing with MySQL and Fortran: How to implement data science computing functions. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Laravel is a PHP framework for easy building of web applications. It provides a range of powerful features including: Installation: Install the Laravel CLI globally with Composer and create applications in the project directory. Routing: Define the relationship between the URL and the handler in routes/web.php. View: Create a view in resources/views to render the application's interface. Database Integration: Provides out-of-the-box integration with databases such as MySQL and uses migration to create and modify tables. Model and Controller: The model represents the database entity and the controller processes HTTP requests.

MySQL and phpMyAdmin are powerful database management tools. 1) MySQL is used to create databases and tables, and to execute DML and SQL queries. 2) phpMyAdmin provides an intuitive interface for database management, table structure management, data operations and user permission management.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

Article summary: This article provides detailed step-by-step instructions to guide readers on how to easily install the Laravel framework. Laravel is a powerful PHP framework that speeds up the development process of web applications. This tutorial covers the installation process from system requirements to configuring databases and setting up routing. By following these steps, readers can quickly and efficiently lay a solid foundation for their Laravel project.

In MySQL, the function of foreign keys is to establish the relationship between tables and ensure the consistency and integrity of the data. Foreign keys maintain the effectiveness of data through reference integrity checks and cascading operations. Pay attention to performance optimization and avoid common errors when using them.

The main difference between MySQL and MariaDB is performance, functionality and license: 1. MySQL is developed by Oracle, and MariaDB is its fork. 2. MariaDB may perform better in high load environments. 3.MariaDB provides more storage engines and functions. 4.MySQL adopts a dual license, and MariaDB is completely open source. The existing infrastructure, performance requirements, functional requirements and license costs should be taken into account when choosing.

SQL is a standard language for managing relational databases, while MySQL is a database management system that uses SQL. SQL defines ways to interact with a database, including CRUD operations, while MySQL implements the SQL standard and provides additional features such as stored procedures and triggers.

MySQL and phpMyAdmin can be effectively managed through the following steps: 1. Create and delete database: Just click in phpMyAdmin to complete. 2. Manage tables: You can create tables, modify structures, and add indexes. 3. Data operation: Supports inserting, updating, deleting data and executing SQL queries. 4. Import and export data: Supports SQL, CSV, XML and other formats. 5. Optimization and monitoring: Use the OPTIMIZETABLE command to optimize tables and use query analyzers and monitoring tools to solve performance problems.
