


How to quickly deploy a containerized large-scale data processing platform on Linux?
How to quickly deploy a containerized large-scale data processing platform on Linux?
Overview:
With the advent of the big data era, the demand for data processing is increasing. In order to improve efficiency and save resources, using containerization technology to deploy data processing platforms has become a common choice. This article will introduce how to quickly deploy a containerized large-scale data processing platform on Linux.
Step 1: Install Docker
Docker is a widely used containerization platform. Before deploying the data processing platform on Linux, you need to install Docker. Enter the following command in the terminal to install Docker:
sudo apt-get update sudo apt-get install docker-ce
After the installation is complete, run the following command to verify whether the installation is successful:
docker version
If the Docker version information can be displayed correctly, the installation is successful.
Step 2: Create a Docker image
The data processing platform is usually deployed in the form of a mirror. First, we need to create a Docker image that contains the software and configuration required for the data processing platform. The following is a sample Dockerfile:
FROM ubuntu:latest # 安装所需软件,以下以Hadoop为例 RUN apt-get update && apt-get install -y openjdk-8-jdk RUN wget -q http://apache.mirrors.pair.com/hadoop/common/hadoop-3.1.4/hadoop-3.1.4.tar.gz && tar -xzf hadoop-3.1.4.tar.gz -C /usr/local && ln -s /usr/local/hadoop-3.1.4 /usr/local/hadoop && rm hadoop-3.1.4.tar.gz # 配置环境变量,以及其他所需配置 ENV JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 ENV HADOOP_HOME=/usr/local/hadoop ENV PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin ... # 更多软件安装和配置 # 设置工作目录 WORKDIR /root # 启动时执行的命令 CMD ["bash"]
In the above example, we used Ubuntu as the base image, installed Java and Hadoop, and made some necessary configurations. According to actual needs, you can customize the image according to this template.
In the directory where the Dockerfile is located, run the following command to build the image:
docker build -t data-processing-platform .
After the build is completed, you can run the following command to view the created image:
docker images
Steps Three: Run the container
After the image is created, we need to run the container to deploy the data processing platform. The following is an example startup command:
docker run -itd --name processing-platform --network host data-processing-platform
This command will run a container named processing-platform in background mode on the host, allowing it to share the network with the host.
Step 4: Access the container
After completing the running of the container, you can enter the inside of the container by executing the following command:
docker exec -it processing-platform bash
This will enter the container and you can operate inside the container .
Step 5: Data processing
Now that the container has been successfully run, you can use the data processing platform for data processing. Depending on the specific platform and requirements, corresponding commands or scripts can be run to perform related data processing tasks.
Summary:
Through the above steps, we can quickly deploy a containerized large-scale data processing platform on Linux. First install Docker, then create the Docker image required for the data processing platform, run the container, and perform data processing operations in the container. This container-based deployment method can improve deployment efficiency and resource utilization, and make large-scale data processing more flexible.
The above is an introduction to how to quickly deploy a containerized large-scale data processing platform on Linux. Hope this helps!
The above is the detailed content of How to quickly deploy a containerized large-scale data processing platform on Linux?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

vscode built-in terminal is a development tool that allows running commands and scripts within the editor to simplify the development process. How to use vscode terminal: Open the terminal with the shortcut key (Ctrl/Cmd). Enter a command or run the script. Use hotkeys (such as Ctrl L to clear the terminal). Change the working directory (such as the cd command). Advanced features include debug mode, automatic code snippet completion, and interactive command history.

To view the Git repository address, perform the following steps: 1. Open the command line and navigate to the repository directory; 2. Run the "git remote -v" command; 3. View the repository name in the output and its corresponding address.

Although Notepad cannot run Java code directly, it can be achieved by using other tools: using the command line compiler (javac) to generate a bytecode file (filename.class). Use the Java interpreter (java) to interpret bytecode, execute the code, and output the result.

There are six ways to run code in Sublime: through hotkeys, menus, build systems, command lines, set default build systems, and custom build commands, and run individual files/projects by right-clicking on projects/files. The build system availability depends on the installation of Sublime Text.

VS Code One-step/Next step shortcut key usage: One-step (backward): Windows/Linux: Ctrl ←; macOS: Cmd ←Next step (forward): Windows/Linux: Ctrl →; macOS: Cmd →

The main uses of Linux include: 1. Server operating system, 2. Embedded system, 3. Desktop operating system, 4. Development and testing environment. Linux excels in these areas, providing stability, security and efficient development tools.

To install Laravel, follow these steps in sequence: Install Composer (for macOS/Linux and Windows) Install Laravel Installer Create a new project Start Service Access Application (URL: http://127.0.0.1:8000) Set up the database connection (if required)
