


Golang in Password Management: Obtaining and Storing Encryption Keys from Vault
Application of Golang in Password Management: Obtaining and Storing Encryption Keys from Vault
Introduction:
In modern software development, security is a crucial aspect. The secure storage and use of encryption keys is critical to password management. In this post, we will discuss how to obtain and store encryption keys using Golang and Vault.
What is Vault?
Vault is an open source tool developed by HashiCorp for securely storing and accessing secrets, passwords and sensitive data. Vault provides a range of features, including role-based access control, encrypted storage, secrets automation, audit logs, and more. By using Vault, we can centrally store sensitive data in a safe place and provide secure access to applications and services.
Use Vault to obtain the encryption key:
First, we need to install and configure Vault. You can refer to Vault's official documentation for operation. Once installed, we can use Golang to interact with Vault.
When using Vault in Golang, we can use Vault's API to obtain the encryption key. First, we need to import the vault package and other necessary libraries:
import ( "fmt" "github.com/hashicorp/vault/api" )
Next, we can write a function to get the encryption key:
func getEncryptionKey() (string, error) { config := &api.Config{ Address: "http://localhost:8200", // 替换为Vault的地址 } client, err := api.NewClient(config) if err != nil { return "", err } // 设置Vault的访问令牌 client.SetToken("YOUR_VAULT_TOKEN") // 从Vault中获取加密密钥 secret, err := client.Logical().Read("secret/data/encryption-key") if err != nil { return "", err } if secret != nil && secret.Data != nil { if key, ok := secret.Data["key"].(string); ok { return key, nil } } return "", fmt.Errorf("encryption key not found") }
In the above code, we first create Create a Vault client and set the Vault address and access token. We then use the client.Logical().Read
method to get the encryption key from the Vault. Finally, we extract the encryption key from Vault's response data and return it.
Use Vault to store encryption keys:
In addition to obtaining encryption keys from Vault, we can also use Vault to store encryption keys securely. Next, we will demonstrate how to use Golang to store encryption keys.
First, we need to write a function to store the encryption key into the Vault:
func storeEncryptionKey(key string) error { config := &api.Config{ Address: "http://localhost:8200", // 替换为Vault的地址 } client, err := api.NewClient(config) if err != nil { return err } // 设置Vault的访问令牌 client.SetToken("YOUR_VAULT_TOKEN") // 将加密密钥存储到Vault中 data := map[string]interface{}{ "key": key, } _, err = client.Logical().Write("secret/data/encryption-key", data) if err != nil { return err } return nil }
In the above code, we first create a Vault client and set up the Vault address and access token. We then use the client.Logical().Write
method to store the encryption key into the Vault.
Usage:
Now that we have learned how to obtain and store encryption keys, we can use these functions in our applications to enhance the security of password management.
Here is an example that demonstrates how to use Vault's encryption keys to encrypt and decrypt passwords in Golang:
import ( "encoding/base64" "fmt" "github.com/awnumar/memguard" ) func encryptPassword(password string) (string, error) { key, err := getEncryptionKey() if err != nil { return "", err } guardedKey := memguard.NewBufferFromBytes([]byte(key)) defer memguard.PurgeBuffer(guardedKey) ciphertext, err := aesEncrypt([]byte(password), guardedKey.Buffer()) if err != nil { return "", err } encodedCiphertext := base64.StdEncoding.EncodeToString(ciphertext) return encodedCiphertext, nil } func decryptPassword(encodedCiphertext string) (string, error) { key, err := getEncryptionKey() if err != nil { return "", err } guardedKey := memguard.NewBufferFromBytes([]byte(key)) defer memguard.PurgeBuffer(guardedKey) ciphertext, err := base64.StdEncoding.DecodeString(encodedCiphertext) if err != nil { return "", err } plaintext, err := aesDecrypt(ciphertext, guardedKey.Buffer()) if err != nil { return "", err } return string(plaintext), nil } func main() { // 加密密码 encryptedPassword, err := encryptPassword("mySecretPassword") if err != nil { fmt.Println(err) return } fmt.Println("Encrypted Password:", encryptedPassword) // 解密密码 decryptedPassword, err := decryptPassword(encryptedPassword) if err != nil { fmt.Println(err) return } fmt.Println("Decrypted Password:", decryptedPassword) }
In the above code, we first use The getEncryptionKey
function obtains the encryption key from Vault. We then use that key to encrypt the password and then decrypt it. Finally, we print out the encrypted and decrypted password.
Conclusion:
In this article, we discussed how to obtain and store encryption keys using Golang and Vault. We use Vault's API to interact with Vault and demonstrate how to use Vault's encryption keys to encrypt and decrypt passwords in Golang. By using Vault properly, we can enhance the security of password management and protect sensitive data. I hope this article will help you understand the application of Golang in password management.
The above is the detailed content of Golang in Password Management: Obtaining and Storing Encryption Keys from Vault. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.
