How to implement cache elimination strategy in Golang?
Golang is a programming language that has become very popular in recent years. One of its characteristics is its high efficiency and strong concurrency. When using Golang to develop web applications, we often involve the use of cache. Caching can improve application performance and response speed, but if we do not handle cache eviction properly, it will cause the cache to occupy too much memory and affect the stability of the system. This article will introduce how to implement cache elimination strategy in Golang.
What is cache elimination?
Simply put, cache elimination means that when the cache space is not enough, some cache data needs to be eliminated to make room for new cache data. The cache data elimination strategy is often related to the actual needs of the application.
Cache elimination in Golang
In Golang, we can use the container package in the standard library to implement the cache elimination strategy. This package provides two data structures, List and Heap, both of which can be used to implement cache eviction.
List
List is a doubly linked list in the Golang standard library. We can add cached data to the List according to certain rules and update the data usage in real time. When the cache space is insufficient, we can delete some no longer used cache data from the end of the linked list according to a certain elimination strategy.
The following is a simple sample code to implement the LRU (Least Recently Used) elimination strategy:
type Cache struct { maxBytes int64 // 允许使用的最大内存 usedBytes int64 // 当前已使用的内存 lruList *list.List // 双向链表 cache map[string]*list.Element // map 作为缓存数据的索引 onEvicted func(key string, value []byte) } type entry struct { key string value []byte } // Add 新增一个缓存 func (c *Cache) Add(key string, value []byte) { if ele, ok := c.cache[key]; ok { c.lruList.MoveToFront(ele) kv := ele.Value.(*entry) c.usedBytes += int64(len(value) - len(kv.value)) kv.value = value return } ele := c.lruList.PushFront(&entry{key, value}) c.cache[key] = ele c.usedBytes += int64(len(key) + len(value)) if c.maxBytes > 0 && c.usedBytes > c.maxBytes { c.RemoveOldest() } } // Get 获取一个缓存 func (c *Cache) Get(key string) ([]byte, bool) { if ele, ok := c.cache[key]; ok { c.lruList.MoveToFront(ele) kv := ele.Value.(*entry) return kv.value, true } return nil, false } // RemoveOldest 删除最久未使用的缓存 func (c *Cache) RemoveOldest() { ele := c.lruList.Back() if ele != nil { c.lruList.Remove(ele) kv := ele.Value.(*entry) delete(c.cache, kv.key) c.usedBytes -= int64(len(kv.key) + len(kv.value)) if c.onEvicted != nil { c.onEvicted(kv.key, kv.value) } } }
In the above code, we use List to save cache data and cache map as Index to find a cache quickly and easily. When the cache storage space exceeds the limit, we delete the cache that has not been used for the longest time starting from the end of the list (ie, LRU policy) to make room. At the same time, we also support some other features, such as setting the maximum memory required for each cache and supporting some specific operations when cache data is deleted.
Heap
Heap is the heap in the Golang standard library. It manages a set of data according to a certain priority rule (such as the access time of cached data, the size of the data, etc.) and based on Rules automatically implement data insertion, deletion and query. Similarly, when the cache space is insufficient, we can use Heap to automatically eliminate some data.
The following is a simple sample code to implement the LFU (Least Frequently Used) elimination strategy:
type Item struct { Value []byte Priority int // 优先级,即缓存访问次数 Index int // 在 heap 中的索引 } type PriorityQueue []*Item // 实现 heap.Interface 接口的 Push 方法 func (pq *PriorityQueue) Push(x interface{}) { n := len(*pq) item := x.(*Item) item.Index = n *pq = append(*pq, item) } // 实现 heap.Interface 接口的 Pop 方法 func (pq *PriorityQueue) Pop() interface{} { old := *pq n := len(old) item := old[n-1] item.Index = -1 // 为了安全起见 *pq = old[0 : n-1] return item } // 实现 heap.Interface 接口的 Len 方法 func (pq PriorityQueue) Len() int { return len(pq) } // 实现 heap.Interface 接口的 Less 方法 func (pq PriorityQueue) Less(i, j int) bool { return pq[i].Priority < pq[j].Priority } // 实现 heap.Interface 接口的 Swap 方法 func (pq PriorityQueue) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] pq[i].Index = i pq[j].Index = j } type Cache struct { maxBytes int64 usedBytes int64 cache map[string]*Item queue PriorityQueue onEvicted func(key string, value []byte) } // Add 新增一个缓存 func (c *Cache) Add(key string, value []byte) { if item, ok := c.cache[key]; ok { item.Priority++ item.Value = value heap.Fix(&c.queue, item.Index) } else { item = &Item{Value: value, Priority: 1} c.cache[key] = item heap.Push(&c.queue, item) } c.usedBytes += int64(len(key) + len(value)) if c.maxBytes > 0 && c.usedBytes > c.maxBytes { c.RemoveOldest() } } // Get 获取一个缓存 func (c *Cache) Get(key string) ([]byte, bool) { if item, ok := c.cache[key]; ok { item.Priority++ heap.Fix(&c.queue, item.Index) return item.Value, true } return nil, false } // RemoveOldest 删除访问次数最少的缓存 func (c *Cache) RemoveOldest() { item := heap.Pop(&c.queue).(*Item) delete(c.cache, item.Value) c.usedBytes -= int64(len(item.Value) + item.Priority) if c.onEvicted != nil { c.onEvicted(item.Value, item.Value) } }
In the above code, we use Heap to save cache data and use cache map as an index. Different from List, in heap, we automatically manage the priority of cached data and operations such as insertion and deletion. When the cache storage space exceeds the limit, the heap will automatically delete some cache data that is accessed less frequently.
Summary
When using Golang to write web applications, the use of cache is often inevitable. But to prevent cached data from taking up too much memory, we must handle cache eviction correctly. By using the List and Heap data structures in the Golang standard library, we can easily implement commonly used cache elimination strategies and ensure the stable operation of the application.
The above is the detailed content of How to implement cache elimination strategy in Golang?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.
