Home Backend Development Python Tutorial Python Server Programming: Machine Learning with Scikit-learn

Python Server Programming: Machine Learning with Scikit-learn

Jun 18, 2023 pm 03:33 PM
python scikit-learn Server programming

Python Server Programming: Machine Learning with Scikit-learn

In the past network applications, developers mainly needed to focus on how to write effective server-side code to provide services. However, with the rise of machine learning, more and more applications require data processing and analysis to achieve more intelligent and personalized services. This article will introduce how to use the Scikit-learn library on the Python server side for machine learning.

What is Scikit-learn?

Scikit-learn is an open source machine learning library based on the Python programming language. It contains a large number of machine learning algorithms and tools for processing classification and aggregation. Common machine learning problems such as class and regression. Scikit-learn also provides a wealth of model evaluation and optimization tools, as well as visualization tools to help developers better understand and analyze data.

How to use Scikit-learn on the server side?

To use Scikit-learn on the server side, we first need to ensure that the Python version and Scikit-learn version used meet the requirements. Scikit-learn is typically required in newer versions of Python 2 and Python 3. Scikit-learn can be installed through pip. The installation command is:

pip install scikit-learn
Copy after login

After the installation is completed, we can use Scikit-learn for machine learning on the Python server through the following steps:

  1. Import the Scikit-learn library and the model you need to use

In Python, we can use the import statement to import the Scikit-learn library, and import the machine learning model we need to use through the from statement, for example:

import sklearn
from sklearn.linear_model import LinearRegression
Copy after login
  1. Loading the data set

Before doing machine learning, we need to load the data set to the server side. Scikit-learn supports importing a variety of data sets including CSV, JSON and SQL data formats. We can use the corresponding tool libraries and functions to load data sets into Python. For example, .csv files can be easily read into Python using the pandas library:

import pandas as pd
data = pd.read_csv('data.csv')
Copy after login
  1. Split the Dataset

After loading the dataset, we need to split it into Training set and test set for training and testing of machine learning models. Scikit-learn provides the train_test_split function, which can help us divide the data set into a training set and a test set.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Copy after login

Among them, the train_test_split function splits the data set into a training set and a test set according to a given ratio. The test_size parameter specifies the size of the test set, and the random_state parameter specifies the random number seed when dividing the data set.

  1. Training model

After splitting the data set into a training set and a test set, we can train the machine learning model through the fit function.

model = LinearRegression()
model.fit(X_train, y_train)
Copy after login

Among them, we selected the linear regression model and trained it using the fit function. X_train and y_train are the feature matrix and target value in the training set respectively.

  1. Evaluate the model

After completing training the model, we need to evaluate it to determine its performance and accuracy. In Scikit-learn, we can use the score function to evaluate the model.

model.score(X_test, y_test)
Copy after login

Among them, X_test and y_test are the feature matrix and target value in the test set respectively.

Summary

On the Python server side, using Scikit-learn for machine learning is very convenient and efficient. Scikit-learn provides a large number of machine learning algorithms and tools that can help developers better process and analyze data and achieve more intelligent and personalized services. Through the above steps, we can easily integrate Scikit-learn into the Python server side and use it for machine learning.

The above is the detailed content of Python Server Programming: Machine Learning with Scikit-learn. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1665
14
PHP Tutorial
1270
29
C# Tutorial
1250
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles