How to use Go language for blockchain wallet development?
With the continuous development and application of blockchain technology, blockchain wallets, as a management tool for digital assets, have become an area of concern to more and more people, and have also become an important part of blockchain development. The security and ease of use of wallets are two core issues in blockchain applications. Today we will learn how to use Go language for blockchain wallet development, ensuring security without losing ease of use.
- Basic knowledge of blockchain wallet
First of all, we need to understand what a blockchain wallet is. Relative to digital wallets in the traditional financial world, blockchain wallets refer more to an application for managing cryptocurrencies and digital assets. In blockchain, transactions are verified through digital signatures, and wallets are software that store private keys and create digital signatures. Therefore, security is the first element of a blockchain wallet, followed by ease of use.
- Develop a simple blockchain wallet
In this article, we will use the Go language as an example to develop a blockchain wallet. We will build a simple blockchain wallet program with the following basic functions:
- Generate a public and private key pair
- Save the private key
- Import from the private key Public key
- Create transaction
- Sign transaction
- Broadcast transaction
2.1 Generate public and private key pair
Provided in Go language It has good support and can easily generate public and private key pairs. We can use the following command to generate a public and private key pair:
package main import ( "crypto/ecdsa" "crypto/rand" "crypto/x509" "encoding/hex" "encoding/pem" "errors" "fmt" "io/ioutil" "os" ) func generateKeys() (*ecdsa.PrivateKey, error) { key, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) if err != nil { return nil, errors.New("generate keys error: " + err.Error()) } file, err := os.Create("private.pem") if err != nil { return nil, errors.New("create private key file error: " + err.Error()) } defer file.Close() err = pem.Encode(file, &pem.Block{ Type: "PRIVATE KEY", Bytes: x509.MarshalECPrivateKey(key), }) if err != nil { return nil, errors.New("encode private key error: " + err.Error()) } pub := key.PublicKey pubBytes, err := x509.MarshalPKIXPublicKey(&pub) if err != nil { return nil, errors.New("marshal public key error: " + err.Error()) } pubStr := hex.EncodeToString(pubBytes) fmt.Println("public key: " + pubStr) return key, nil }
The above command will generate a public and private key pair and save the private key to a local file. When generating a public-private key pair, the elliptic curve encryption algorithm is used, which has high security.
2.2 Import public key from private key
When we need to use the wallet next time, we can read the private key from the local file, calculate the public key, and save it to memory for subsequent use. The following is a code example for importing a public key from a private key:
package main import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/x509" "encoding/pem" "flag" "fmt" "io/ioutil" "os" ) var privateKeyFile string var publicKey *ecdsa.PublicKey func init() { flag.StringVar(&privateKeyFile, "key", "private.pem", "private key file") } func main() { flag.Parse() key, err := readPrivateKeyFromFile(privateKeyFile) if err != nil { fmt.Println("read private key from file error:", err) return } publicKey = &key.PublicKey fmt.Println("public key:", publicKey) } func readPrivateKeyFromFile(filename string) (*ecdsa.PrivateKey, error) { data, err := ioutil.ReadFile(filename) if err != nil { return nil, err } block, _ := pem.Decode(data) if block == nil { return nil, fmt.Errorf("decode failed at %s", filename) } return x509.ParseECPrivateKey(block.Bytes) }
2.3 Creating a transaction
In actual use, one of the main functions of the wallet is to create transactions. The following is a code example for creating a transfer transaction:
package main import ( "crypto/ecdsa" "crypto/rand" "crypto/sha256" "encoding/hex" "errors" "fmt" "math/big" "os" ) type transaction struct { senderPrivateKey *ecdsa.PrivateKey recipient string amount *big.Int } func newTransaction(senderPrivateKey *ecdsa.PrivateKey, recipient string, amount *big.Int) (*transaction, error) { if senderPrivateKey == nil { return nil, errors.New("`senderPrivateKey` is nil") } if recipient == "" { return nil, errors.New("`recipient` is empty") } if amount == nil || amount.Cmp(big.NewInt(0)) <= 0 { return nil, errors.New("`amount` is invalid") } return &transaction{ senderPrivateKey: senderPrivateKey, recipient: recipient, amount: amount, }, nil } func (t *transaction) sign() (string, error) { if t.senderPrivateKey == nil { return "", errors.New("`senderPrivateKey` is nil") } hash := sha256.Sum256([]byte(fmt.Sprintf("%s%s%d", t.senderPrivateKey.PublicKey.X.String(), t.senderPrivateKey.PublicKey.Y.String(), t.amount))) r, s, err := ecdsa.Sign(rand.Reader, t.senderPrivateKey, hash[:]) if err != nil { return "", errors.New("sign error: " + err.Error()) } sig := r.String() + "," + s.String() return sig, nil }
In the above code, we use SHA-256 for hash calculation and the ECDSA algorithm to sign the transaction to ensure the security of the transaction.
2.4 Broadcast Transaction
After creating and signing the transaction, we need to broadcast it to the blockchain network so that any node in the entire network can see and verify the transaction. The following is a code example of a broadcast transaction:
package main import ( "bytes" "encoding/json" "fmt" "io/ioutil" "net/http" "net/url" ) type client struct { } func newClient() *client { return &client{} } func (c *client) post(url string, data url.Values) ([]byte, error) { res, err := http.PostForm(url, data) if err != nil { return nil, err } defer res.Body.Close() content, err := ioutil.ReadAll(res.Body) if err != nil { return nil, err } return content, nil } func (c *client) broadcastTransaction(tx *transaction) (string, error) { data := url.Values{} data.Add("sender_public_key", tx.senderPrivateKey.PublicKey.X.String()+tx.senderPrivateKey.PublicKey.Y.String()) data.Add("recipient", tx.recipient) data.Add("amount", tx.amount.String()) sig, err := tx.sign() if err != nil { return "", err } data.Add("signature", sig) content, err := c.post("http://localhost:8080/api/transactions", data) if err != nil { return "", err } var result struct { Success bool `json:"success"` Message string `json:"message"` } err = json.Unmarshal(content, &result) if err != nil { return "", err } if result.Success { return result.Message, nil } return "", fmt.Errorf("broadcast error: %s", result.Message) }
During the broadcast transaction, we send the transaction content to the nodes in the network and wait for responses from other nodes. Due to the P2P nature of the blockchain network, we need to ensure that transactions can be verified and identified by other nodes.
- Summary
Through the introduction of this article, we can see that using Go language for blockchain wallet development is both interesting and challenging. When developing a wallet, we need to consider both security and ease of use so that the wallet can be accepted and used by more people. Therefore, we need to pay attention to enhancing the stability, reliability, ease of maintenance, etc. of the code during the development process. In future applications and development, we also need to pay more attention to the social impact and development of blockchain and continue to support its application and promotion.
The above is the detailed content of How to use Go language for blockchain wallet development?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











With the popularization and development of digital currency, more and more people are beginning to pay attention to and use digital currency apps. These applications provide users with a convenient way to manage and trade digital assets. So, what kind of software is a digital currency app? Let us have an in-depth understanding and take stock of the top ten digital currency apps in the world.

The built-in quantization tools on the exchange include: 1. Binance: Provides Binance Futures quantitative module, low handling fees, and supports AI-assisted transactions. 2. OKX (Ouyi): Supports multi-account management and intelligent order routing, and provides institutional-level risk control. The independent quantitative strategy platforms include: 3. 3Commas: drag-and-drop strategy generator, suitable for multi-platform hedging arbitrage. 4. Quadency: Professional-level algorithm strategy library, supporting customized risk thresholds. 5. Pionex: Built-in 16 preset strategy, low transaction fee. Vertical domain tools include: 6. Cryptohopper: cloud-based quantitative platform, supporting 150 technical indicators. 7. Bitsgap:

The download, installation and registration process of the Hong Kong Digital Currency Exchange app is very simple. Users can quickly obtain and use this app through the official app download link provided in this article. This article will introduce in detail how to download, install and register the Hong Kong Digital Currency Exchange app to ensure that every user can complete the operation smoothly.

Huobi Digital Currency Trading App is one of the world's leading digital asset trading platforms and is favored by the majority of users. In order to facilitate users to quickly and safely download and install Huobi app, this article will provide you with detailed download and installation tutorials. Please note that this article provides a download link to Huobi official app. Use the download link to this article to download safely to avoid mistakenly entering a copycat website or downloading to unofficial versions. Next, let us download and install Huobi app step by step.

Recommended cryptocurrency trading platforms include: 1. Binance: the world's largest trading volume, supports 1,400 currencies, FCA and MAS certification. 2. OKX: Strong technical strength, supports 400 currencies, approved by the Hong Kong Securities Regulatory Commission. 3. Coinbase: The largest compliance platform in the United States, suitable for beginners, SEC and FinCEN supervision. 4. Kraken: a veteran European brand, ISO 27001 certified, holds a US MSB and UK FCA license. 5. Gate.io: The most complete currency (800), low transaction fees, and obtained a license from multiple countries. 6. Huobi Global: an old platform that provides a variety of services, and holds Japanese FSA and Hong Kong TCSP licenses. 7. KuCoin

The methods to download the Hong Kong Digital Currency Exchange APP include: 1. Select a compliant platform, such as OSL, HashKey or Binance HK, etc.; 2. Download through official channels, iOS users download on the App Store, Android users download through Google Play or official website; 3. Register and verify their identity, use Hong Kong mobile phone number or email address to upload identity and address certificates; 4. Set security measures, enable two-factor authentication and regularly check account activities.

Uniswap users can withdraw tokens from liquidity pools to their wallets to ensure asset security and liquidity. The process requires gas fees and is affected by network congestion.

In today's digital economy era, digital currency trading has become the focus of many investors and traders. As the world's leading digital currency trading platform, OKX provides safe, convenient and efficient trading services. In order to make it easier for users to trade digital currency, Ouyi has launched its official mobile app. This article will introduce you in detail how to quickly download and install Ouyi's digital currency trading app through the official app download link provided in this article.
