How to use Go language for deep learning development?
In recent years, with the rapid development of the field of artificial intelligence, deep learning has become one of the technologies that has received extremely high attention and application value. However, deep learning development usually requires powerful computing power and complex algorithm implementation, which poses considerable challenges to developers. Fortunately, Go language, as a fast, efficient, compilable and executable programming language, provides some powerful libraries and tools to help developers carry out simpler and more efficient deep learning development. This article will introduce how to use Go language for deep learning development.
Introduction to Deep Learning
Deep learning is a subset of the field of machine learning that focuses on building large neural networks to solve more complex problems. It can not only perform tasks such as classification, regression, and clustering, but also automatically extract features and patterns in data. Deep learning has a wide range of applications, including image processing, natural language processing, voice recognition and data mining.
Deep Learning in Go Language
As a language for modern computer systems, Go language’s system programming ideas and efficient performance provide many advantages for the implementation of deep learning. Go language supports high concurrency, good scalability, conciseness and easy readability, etc., so it has great potential in deep learning development.
Deep learning in Go language is mainly implemented through the use of deep learning libraries. Here are some common deep learning libraries.
- Gorgonia
Gorgonia is a deep learning framework based on the Go language, which can help us build and train neural networks. At its core, Gorgonia is a symbolic computational graph. This means we can define variables, tensors, and operations in a computational graph and then use automatic differentiation to calculate gradients. Gorgonia also provides many useful features such as convolutional neural networks, recurrent neural networks, and generative adversarial networks.
The following is a simple example program for building, training, and testing a fully connected neural network on the MNIST dataset.
package main import ( "fmt" "log" "github.com/gonum/matrix/mat64" "gorgonia.org/gorgonia" "gorgonia.org/tensor" ) func main() { // 1. Load data data, labels, err := loadData() if err != nil { log.Fatal(err) } // 2. Create neural network g := gorgonia.NewGraph() x := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data), len(data[0])), gorgonia.WithName("x")) y := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(labels), 1), gorgonia.WithName("y")) w := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data[0]), 10), gorgonia.WithName("w")) b := gorgonia.NewVector(g, tensor.Float64, gorgonia.WithShape(10), gorgonia.WithName("b")) pred := gorgonia.Must(gorgonia.Mul(x, w)) pred = gorgonia.Must(gorgonia.Add(pred, b)) loss := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.SoftMax(pred)), gorgonia.Must(gorgonia.ArgMax(y, 1)))) if _, err := gorgonia.Grad(loss, w, b); err != nil { log.Fatal(err) } // 3. Train neural network machine := gorgonia.NewTapeMachine(g) solver := gorgonia.NewAdamSolver() for i := 0; i < 100; i++ { if err := machine.RunAll(); err != nil { log.Fatal(err) } if err := solver.Step(gorgonia.Nodes{w, b}, gorgonia.Nodes{loss}); err != nil { log.Fatal(err) } machine.Reset() } // 4. Test neural network test, testLabels, err := loadTest() if err != nil { log.Fatal(err) } testPred := gorgonia.Must(gorgonia.Mul(gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(test), len(test[0])), test, gorgonia.WithName("test")), w)) testPred = gorgonia.Must(gorgonia.Add(testPred, b)) testLoss, err := gorgonia.SoftMax(gorgonia.Must(gorgonia.Mul(gorgonia.OnesLike(testPred), testPred)), 1) if err != nil { log.Fatal(err) } fmt.Println("Accuracy:", accuracy(testPred.Value().Data().([]float64), testLabels)) } func accuracy(preds mat64.Matrix, labels []float64) float64 { correct := 0 for i := 0; i < preds.Rows(); i++ { if preds.At(i, int(labels[i])) == mat64.Max(preds.RowView(i)) { correct++ } } return float64(correct) / float64(preds.Rows()) } func loadData() (data *mat64.Dense, labels *mat64.Dense, err error) { // ... } func loadTest() (test *mat64.Dense, labels []float64, err error) { // ... }
- Golearn
Golearn is a machine learning library written in Go language. The library contains many classic machine learning algorithms, such as decision trees, support vector machines and K-nearest neighbor algorithm. In addition to classic machine learning algorithms, Golearn also includes some deep learning algorithms, such as neurons, convolutional neural networks, and recurrent neural networks.
The following is an example program for building, training, and testing a multilayer perceptron on the XOR dataset.
package main import ( "fmt" "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/linear_models" "github.com/sjwhitworth/golearn/neural" ) func main() { // 1. Load data data, err := base.ParseCSVToInstances("xor.csv", false) if err != nil { panic(err) } // 2. Create neural network net := neural.NewMultiLayerPerceptron([]int{2, 2, 1}, []string{"relu", "sigmoid"}) net.Initialize() // 3. Train neural network trainer := neural.NewBackpropTrainer(net, 0.1, 0.5) for i := 0; i < 5000; i++ { trainer.Train(data) } // 4. Test neural network meta := base.NewLazilyFilteredInstances(data, func(r base.FixedDataGridRow) bool { return r.RowString(0) != "0" && r.RowString(1) != "0" }) preds, err := net.Predict(meta) if err != nil { panic(err) } fmt.Println(preds) }
- Gorgonia/XGBoost
XGBoost is a well-known gradient boosting library that can be used for various machine learning tasks, such as classification, regression, and ranking. In the Go language, we can use Gorgonia/XGBoost as the Go language interface of XGBoost. This library provides some functions that facilitate deep learning development using XGBoost.
The following is an example program for building, training, and testing an XGBoost classifier on the XOR dataset.
package main import ( "fmt" "gorgonia.org/xgboost" ) func main() { // 1. Load data train, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } // 2. Create XGBoost classifier param := xgboost.NewClassificationParams() param.MaxDepth = 2 model, err := xgboost.Train(train, param) if err != nil { panic(err) } // 3. Test XGBoost classifier test, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } preds, err := model.Predict(test) if err != nil { panic(err) } fmt.Println(preds) }
Conclusion
This article introduces how to use Go language for deep learning development and introduces several common deep learning libraries. As a fast, efficient, compilable and executable programming language, Go language has shown considerable advantages in deep learning development. If you're looking for an efficient way to develop for deep learning, Go is worth a try.
The above is the detailed content of How to use Go language for deep learning development?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Written previously, today we discuss how deep learning technology can improve the performance of vision-based SLAM (simultaneous localization and mapping) in complex environments. By combining deep feature extraction and depth matching methods, here we introduce a versatile hybrid visual SLAM system designed to improve adaptation in challenging scenarios such as low-light conditions, dynamic lighting, weakly textured areas, and severe jitter. sex. Our system supports multiple modes, including extended monocular, stereo, monocular-inertial, and stereo-inertial configurations. In addition, it also analyzes how to combine visual SLAM with deep learning methods to inspire other research. Through extensive experiments on public datasets and self-sampled data, we demonstrate the superiority of SL-SLAM in terms of positioning accuracy and tracking robustness.

Editor | Radish Skin Since the release of the powerful AlphaFold2 in 2021, scientists have been using protein structure prediction models to map various protein structures within cells, discover drugs, and draw a "cosmic map" of every known protein interaction. . Just now, Google DeepMind released the AlphaFold3 model, which can perform joint structure predictions for complexes including proteins, nucleic acids, small molecules, ions and modified residues. The accuracy of AlphaFold3 has been significantly improved compared to many dedicated tools in the past (protein-ligand interaction, protein-nucleic acid interaction, antibody-antigen prediction). This shows that within a single unified deep learning framework, it is possible to achieve

In Go, WebSocket messages can be sent using the gorilla/websocket package. Specific steps: Establish a WebSocket connection. Send a text message: Call WriteMessage(websocket.TextMessage,[]byte("Message")). Send a binary message: call WriteMessage(websocket.BinaryMessage,[]byte{1,2,3}).

In Go, you can use regular expressions to match timestamps: compile a regular expression string, such as the one used to match ISO8601 timestamps: ^\d{4}-\d{2}-\d{2}T \d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . Use the regexp.MatchString function to check if a string matches a regular expression.

Go and the Go language are different entities with different characteristics. Go (also known as Golang) is known for its concurrency, fast compilation speed, memory management, and cross-platform advantages. Disadvantages of the Go language include a less rich ecosystem than other languages, a stricter syntax, and a lack of dynamic typing.

Memory leaks can cause Go program memory to continuously increase by: closing resources that are no longer in use, such as files, network connections, and database connections. Use weak references to prevent memory leaks and target objects for garbage collection when they are no longer strongly referenced. Using go coroutine, the coroutine stack memory will be automatically released when exiting to avoid memory leaks.

When passing a map to a function in Go, a copy will be created by default, and modifications to the copy will not affect the original map. If you need to modify the original map, you can pass it through a pointer. Empty maps need to be handled with care, because they are technically nil pointers, and passing an empty map to a function that expects a non-empty map will cause an error.

In Golang, error wrappers allow you to create new errors by appending contextual information to the original error. This can be used to unify the types of errors thrown by different libraries or components, simplifying debugging and error handling. The steps are as follows: Use the errors.Wrap function to wrap the original errors into new errors. The new error contains contextual information from the original error. Use fmt.Printf to output wrapped errors, providing more context and actionability. When handling different types of errors, use the errors.Wrap function to unify the error types.
