Example analysis of Redis persistence mechanism
Redis stores data in memory, and the data will be lost when the process exits. Through Redis's persistence mechanism, data in memory can be stored on disk, and data can be loaded from disk files to refill the memory after a restart.
Redis supports two persistence mechanisms: full mirror RDB and incremental persistence AOF.
RDB is a snapshot of Redis, which stores all unexpired key-value pairs in Redis.
Configure RDB in redis.conf
:
dbfilename dump.rdb dir /var/lib/redis save 900 1 save 300 10 save 60 10000 save "" stop-writes-on-bgsave-error yes rdbcompression yes rdbchecksum yes
Every time the redis process starts, it will first check whether the rdb file exists, and if it exists, load the contents of the file. into memory.
When redis automatically updates the RDB file, it will fork a sub-process to perform snapshot saving. During the saving period, the main process can provide services normally.
We can also save the snapshot through the command:
save
: Save the snapshot in a blocking manner, and redis cannot handle other requests during the save periodbgsave
: Fork a child process to complete the saving work. The normal service of redis will not be affected during the saving period. The
lastsave
command can get the latest RDB file creation timestamp, which can be used to check whether the save is successful.
RDB is a database snapshot, and each time it is created, the entire database needs to be written to the file. This is a very time-consuming operation, so it is difficult to perform frequently, and a large amount of data may be lost when an exception occurs.
Redis provides the incremental persistence tool AOF (Append Only ile). AOF performs persistence by recording all write instructions in the Redis database. Instructions are stored in the AOF file in the format of the Redis communication protocol.
When the Redis process starts, it will check whether the AOF file exists. If it exists, the instructions in the AOF will be executed sequentially to restore the data.
Redis will add a log to the AOF file every time it executes a write command, but the new record will not be written to disk immediately (fsync) but cached in the write buffer.
We can configure the strategy of writing the data in the buffer to disk to avoid data loss.
Writing data in the buffer to disk is a time-consuming operation. Frequent disk writing will affect performance, but Redis crashes and loses less data, so we need to make trade-offs based on application scenarios.
AOF may record redundant instructions. If we execute the set instruction 100 times for the same key, there will be 100 records in the AOF file but only the last set instruction will be retained to recover the data. AOF rewriting will organize the AOF file, clean up unnecessary command logs (such as deleting overwritten set commands), and reduce the size of the AOF file.
redis adopts a background rewriting strategy, that is, forking a child process to write the sorted AOF into a temporary file. Use BGREWRITEAOF
to manually trigger the background rewrite operation.
Actually AOF rewriting will not read the original AOF file. The child process will have a copy of the current data and directly generate a new AOF file based on the copy.
During the rewriting period, the main process writes the new write operations into the original AOF file and AOF rewrite cache. Even if the rewriting fails, the original AOF file still saves complete data. When the child process completes AOF rewriting, it will send a signal to the main process. After receiving the signal, the main process will write the contents of the AOF rewriting cache into a new AOF file, and then overwrite the original file with the new AOF file.
Configure AOF in redis.conf
:
appendonly yes appendfilename appendonly.aof appendfsync everysec no-appendfsync-on-rewrite no auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb
Redis will record the size of the AOF file at startup or after the last rewrite. If the size of the new data reaches 100% of the original size (auto-aof-rewrite-percentage configuration) triggers rewriting.
The rewrite operation will only be performed when the current AOF file size is greater than auto-aof-rewrite-min-size. Otherwise, rewriting will not be performed even if the amount of new data exceeds the specified percentage. This avoids the problem of frequent initial rewriting caused by the original file being too small.
The above is the detailed content of Example analysis of Redis persistence mechanism. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Using the Redis directive requires the following steps: Open the Redis client. Enter the command (verb key value). Provides the required parameters (varies from instruction to instruction). Press Enter to execute the command. Redis returns a response indicating the result of the operation (usually OK or -ERR).

Using Redis to lock operations requires obtaining the lock through the SETNX command, and then using the EXPIRE command to set the expiration time. The specific steps are: (1) Use the SETNX command to try to set a key-value pair; (2) Use the EXPIRE command to set the expiration time for the lock; (3) Use the DEL command to delete the lock when the lock is no longer needed.

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.
