How to use Go and Redis to implement distributed mutex locks and red locks
Mutex lock
There is a setting in Redis. If the
command does not exist, we can use this command to implement the mutex lock function. The standard implementation is recommended in the Redis official document. The method is SET resource_name my_random_value NX PX 30000
this series of commands, where:
-
##resource_name
represents the resource to be locked
NX
means if it does not exist, set it
PX 30000
means the expiration time is 30000 milliseconds, which is 30 seconds
my_random_value
This value must be unique among all clients, and the value cannot be the same for all lock competitors with the same key.
if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end
TryLock actually uses
SET resource_name my_random_value NX PX 30000 to lock, here we use
UUID As a random value, and the random value is returned when the lock is successful, this random value will be used when
Unlock;
UnlockThe unlocking logic is to execute what was mentioned earlier The
lua script.
func (l *Lock) TryLock(ctx context.Context) error { success, err := l.client.SetNX(ctx, l.resource, l.randomValue, ttl).Result() if err != nil { return err } // 加锁失败 if !success { return ErrLockFailed } // 加锁成功 l.randomValue = randomValue return nil } func (l *Lock) Unlock(ctx context.Context) error { return l.script.Run(ctx, l.client, []string{l.resource}, l.randomValue).Err() }
Lock is a blocking acquisition lock, so when the lock fails, you need to retry. Of course, other abnormal situations may occur (such as network problems, request timeouts, etc.), and
error will be returned directly in these situations.
- Try to lock. If the lock is successful, it will return directly.
- If the lock fails, it will continue to loop and try to add. Lock until successful or an abnormal situation occurs
func (l *Lock) Lock(ctx context.Context) error { // 尝试加锁 err := l.TryLock(ctx) if err == nil { return nil } if !errors.Is(err, ErrLockFailed) { return err } // 加锁失败,不断尝试 ticker := time.NewTicker(l.tryLockInterval) defer ticker.Stop() for { select { case <-ctx.Done(): // 超时 return ErrTimeout case <-ticker.C: // 重新尝试加锁 err := l.TryLock(ctx) if err == nil { return nil } if !errors.Is(err, ErrLockFailed) { return err } } } }
- The lock is successful and the watchdog is started
- The watchdog thread continues to extend Lock process time
- Unlock, turn off watchdog
func (l *Lock) startWatchDog() { ticker := time.NewTicker(l.ttl / 3) defer ticker.Stop() for { select { case <-ticker.C: // 延长锁的过期时间 ctx, cancel := context.WithTimeout(context.Background(), l.ttl/3*2) ok, err := l.client.Expire(ctx, l.resource, l.ttl).Result() cancel() // 异常或锁已经不存在则不再续期 if err != nil || !ok { return } case <-l.watchDog: // 已经解锁 return } } }
func (l *Lock) TryLock(ctx context.Context) error { success, err := l.client.SetNX(ctx, l.resource, l.randomValue, l.ttl).Result() if err != nil { return err } // 加锁失败 if !success { return ErrLockFailed } // 加锁成功,启动看门狗 go l.startWatchDog() return nil }
func (l *Lock) Unlock(ctx context.Context) error { err := l.script.Run(ctx, l.client, []string{l.resource}, l.randomValue).Err() // 关闭看门狗 close(l.watchDog) return err }
加锁实现
在加锁逻辑里,我们主要是对每个Redis实例执行SET resource_name my_random_value NX PX 30000
获取锁,然后把成功获取锁的客户端放到一个channel
里(这里因为是多线程并发获取锁,使用slice可能有并发问题),同时使用sync.WaitGroup
等待所有获取锁操作结束。
然后判断成功获取到的锁的数量是否大于一半,如果没有得到一半以上的锁,说明加锁失败,释放已经获得的锁。
如果加锁成功,则启动看门狗延长锁的过期时间。
func (l *RedLock) TryLock(ctx context.Context) error { randomValue := gofakeit.UUID() var wg sync.WaitGroup wg.Add(len(l.clients)) // 成功获得锁的Redis实例的客户端 successClients := make(chan *redis.Client, len(l.clients)) for _, client := range l.clients { go func(client *redis.Client) { defer wg.Done() success, err := client.SetNX(ctx, l.resource, randomValue, ttl).Result() if err != nil { return } // 加锁失败 if !success { return } // 加锁成功,启动看门狗 go l.startWatchDog() successClients <- client }(client) } // 等待所有获取锁操作完成 wg.Wait() close(successClients) // 如果成功加锁得客户端少于客户端数量的一半+1,表示加锁失败 if len(successClients) < len(l.clients)/2+1 { // 就算加锁失败,也要把已经获得的锁给释放掉 for client := range successClients { go func(client *redis.Client) { ctx, cancel := context.WithTimeout(context.Background(), ttl) l.script.Run(ctx, client, []string{l.resource}, randomValue) cancel() }(client) } return ErrLockFailed } // 加锁成功,启动看门狗 l.randomValue = randomValue l.successClients = nil for successClient := range successClients { l.successClients = append(l.successClients, successClient) } return nil }
看门狗实现
我们需要延长所有成功获取到的锁的过期时间。
func (l *RedLock) startWatchDog() { l.watchDog = make(chan struct{}) ticker := time.NewTicker(resetTTLInterval) defer ticker.Stop() for { select { case <-ticker.C: // 延长锁的过期时间 for _, client := range l.successClients { go func(client *redis.Client) { ctx, cancel := context.WithTimeout(context.Background(), ttl-resetTTLInterval) client.Expire(ctx, l.resource, ttl) cancel() }(client) } case <-l.watchDog: // 已经解锁 return } } }
解锁实现
我们需要解锁所有成功获取到的锁。
func (l *RedLock) Unlock(ctx context.Context) error { for _, client := range l.successClients { go func(client *redis.Client) { l.script.Run(ctx, client, []string{l.resource}, l.randomValue) }(client) } // 关闭看门狗 close(l.watchDog) return nil }
The above is the detailed content of How to use Go and Redis to implement distributed mutex locks and red locks. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
