How SpringBoot integrates Redis to implement hotspot data caching
We use IDEA SpringBoot as the test environment for integrating Redis in Java
First, we need to import the maven dependency of Redis
<!-- Redis的maven依赖包 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
Secondly, we need to Configure your Redis configuration information in the configuration file. I use the .yml file format
# redis配置 spring: redis: # r服务器地址 host: 127.0.0.1 # 服务器端口 port: 6379 # 数据库索引(默认0) database: 0 # 连接超时时间(毫秒) timeout: 10s jedis: pool: # 连接池中的最大空闲连接数 max-idle: 8 # 连接池中的最小空闲连接数 min-idle: 0 # 连接池最大连接数(使用负值表示没有限制) max-active: 8 # 连接池最大阻塞等待时间(使用负值表示没有限制) max-wait: -1
Make custom configurations for redis
import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.JsonTypeInfo; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator; import org.springframework.cache.annotation.CachingConfigurerSupport; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer; import org.springframework.data.redis.serializer.StringRedisSerializer; @Configuration public class RedisConfigurer extends CachingConfigurerSupport { /** * redisTemplate 序列化使用的jdkSerializeable, 存储二进制字节码, 所以自定义序列化类 */ @Bean public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) { // 配置redisTemplate RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(lettuceConnectionFactory); // 设置序列化 Jackson2JsonRedisSerializer<Object> redisSerializer = getRedisSerializer(); // key序列化 redisTemplate.setKeySerializer(new StringRedisSerializer()); // value序列化 redisTemplate.setValueSerializer(redisSerializer); // Hash key序列化 redisTemplate.setHashKeySerializer(new StringRedisSerializer()); // Hash value序列化 redisTemplate.setHashValueSerializer(redisSerializer); redisTemplate.afterPropertiesSet(); return redisTemplate; } /** * 设置Jackson序列化 */ private Jackson2JsonRedisSerializer<Object> getRedisSerializer() { Jackson2JsonRedisSerializer<Object> redisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); redisSerializer.setObjectMapper(om); return redisSerializer; } }
Then, we need to create a RedisUtil to configure the Redis database Operation
package com.zyxx.test.utils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; /** * @ClassName RedisUtil * @Author * @Date 2019-08-03 17:29:29 * @Version 1.0 **/ @Component public class RedisUtil { @Autowired private RedisTemplate<String, String> template; /** * 读取数据 * * @param key * @return */ public String get(final String key) { return template.opsForValue().get(key); } /** * 写入数据 */ public boolean set(final String key, String value) { boolean res = false; try { template.opsForValue().set(key, value); res = true; } catch (Exception e) { e.printStackTrace(); } return res; } /** * 根据key更新数据 */ public boolean update(final String key, String value) { boolean res = false; try { template.opsForValue().getAndSet(key, value); res = true; } catch (Exception e) { e.printStackTrace(); } return res; } /** * 根据key删除数据 */ public boolean del(final String key) { boolean res = false; try { template.delete(key); res = true; } catch (Exception e) { e.printStackTrace(); } return res; } /** * 是否存在key */ public boolean hasKey(final String key) { boolean res = false; try { res = template.hasKey(key); } catch (Exception e) { e.printStackTrace(); } return res; } /** * 给指定的key设置存活时间 * 默认为-1,表示永久不失效 */ public boolean setExpire(final String key, long seconds) { boolean res = false; try { if (0 < seconds) { res = template.expire(key, seconds, TimeUnit.SECONDS); } } catch (Exception e) { e.printStackTrace(); } return res; } /** * 获取指定key的剩余存活时间 * 默认为-1,表示永久不失效,-2表示该key不存在 */ public long getExpire(final String key) { long res = 0; try { res = template.getExpire(key, TimeUnit.SECONDS); } catch (Exception e) { e.printStackTrace(); } return res; } /** * 移除指定key的有效时间 * 当key的有效时间为-1即永久不失效和当key不存在时返回false,否则返回true */ public boolean persist(final String key) { boolean res = false; try { res = template.persist(key); } catch (Exception e) { e.printStackTrace(); } return res; } }
Finally, we can use unit testing to detect the method we wrote in RedisUtil to operate the Redis database
package com.zyxx.test; import com.zyxx.test.utils.RedisUtil; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.context.junit4.SpringRunner; import javax.annotation.Resource; @RunWith(SpringRunner.class) @SpringBootTest public class TestApplicationTest { @Resource private RedisUtil redisUtil; @Test public void setRedis() { boolean res = redisUtil.set("jay", "周杰伦 - 《以父之名》"); System.out.println(res); } @Test public void getRedis() { String res = redisUtil.get("jay"); System.out.println(res); } @Test public void updateRedis() { boolean res = redisUtil.update("jay", "周杰伦 - 《夜的第七章》"); System.out.println(res); } @Test public void delRedis() { boolean res = redisUtil.del("jay"); System.out.println(res); } @Test public void hasKey() { boolean res = redisUtil.hasKey("jay"); System.out.println(res); } @Test public void expire() { boolean res = redisUtil.setExpire("jay", 100); System.out.println(res); } @Test public void getExpire() { long res = redisUtil.getExpire("jay"); System.out.println(res); } @Test public void persist() { boolean res = redisUtil.persist("jay"); System.out.println(res); } }
It is recommended to use redis-desktop-manager as Redis Display tool for data in the database
At this point, we have completed the basic usage of integrating Redis in daily projects, but in actual projects, more complex usage may be involved. You can adjust the use of Redis according to your business needs.
The above is the detailed content of How SpringBoot integrates Redis to implement hotspot data caching. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
