Table of Contents
1. Overview
2. What is the cardinality?
3. Commands
3.1 PFADD
3.2 PFCOUNT
3.3 PFMERGE
Home Database Redis How to implement Redis using HyperLogLog

How to implement Redis using HyperLogLog

May 26, 2023 pm 05:41 PM
redis hyperloglog

1. Overview

Redis added the HyperLogLog data structure in version 2.8.9, which is used for cardinality statistics. The advantage is that when the number of input elements is very large, the space required to calculate the cardinality is relatively small. And generally relatively constant.

In Redis, each HyperLogLog key only costs 12 KB of memory to calculate the cardinality of nearly 2^64 different elements. This is in sharp contrast to the calculation of cardinality, where a collection with more elements consumes more memory. However, because HyperLogLog only calculates the cardinality based on the input elements and does not store the input elements themselves, HyperLogLog cannot return individual elements of the input like a collection.

2. What is the cardinality?

For example, if the data set is {1, 3, 5, 7, 5, 7, 8}, then the cardinality set of this data set is {1, 3, 5 ,7, 8}, the cardinality (non-repeating elements) is 5. Cardinality estimation is to quickly calculate the cardinality within the acceptable error range.

3. Commands

Currently, only three commands, PFADD, PFCOUNT and PFMERGE, are supported by HyperLogLog. Let’s introduce them one by one first.

3.1 PFADD

Earliest available version: 2.8.9. Time complexity: O(1).

The PFADD command can add elements (multiple elements can be specified) to the HyperLogLog data structure and store them in the key specified by the first parameter key. Returns 1 if the cardinality estimate (number of elements evaluated) has changed, otherwise returns 0, i.e. to confirm whether the cardinality estimate has changed after executing the command. If the specified key does not exist, an empty HyperLogLog data structure is created (i.e., a Redis String with the specified string length and encoding). It is also possible to call the command without specifying an element parameter and only specifying the key. If the key exists, do nothing and return 0; if the key does not exist, a new HyperLogLog data node is created and 1 is returned. Essentially it just generates a new HyperLogLog data structure without storing any elements.

(1) Syntax format:

PFADD key element [element ...]
Copy after login

(2) Return value:

Integer type, if at least one element is added, 1 is returned, otherwise 0 is returned.

(3) Example:

127.0.0.1:6379> PFADD hll a b c d e f g
(integer) 1
127.0.0.1:6379> pfcount hll
(integer) 7
Copy after login

3.2 PFCOUNT

Earliest available version: 2.8.9. Time complexity: O(1). For multiple relatively large keys, the time complexity is O(N).

Use the PFCOUNT command to get a HyperLogLog estimated cardinality value (that is, the number of elements). This command returns 0 if the key does not exist, otherwise it returns an estimate of the key's cardinality. For multiple keys, returned is a cardinality estimate for the union of multiple HyperLogLogs, calculated by merging multiple HyperLogLogs into a temporary HyperLogLog. Using a minimal and consistent amount of memory, HyperLogLog can count the number of unique elements of a collection. Each HyperLogLog uses only 12K plus a few bytes of the key itself.

(1) Syntax format:

PFCOUNT key [key ...]
Copy after login

(2) Return value:

Integer, returns the cardinality estimate of the specified HyperLogLog. If there are multiple HyperLogLogs, the union is returned. Cardinality estimate.

(3) Example:

127.0.0.1:6379> PFADD hll foo bar zap
(integer) 1
127.0.0.1:6379> PFADD hll zap zap zap
(integer) 0
127.0.0.1:6379> PFADD hll foo bar
(integer) 0
127.0.0.1:6379> PFCOUNT hll
(integer) 3
127.0.0.1:6379> PFADD some-other-hll 1 2 3
(integer) 1
127.0.0.1:6379> PFCOUNT some-other-hll
(integer) 3
127.0.0.1:6379> PFCOUNT hll some-other-hll
(integer) 6
Copy after login

(4) Limitation:

The results returned by HyperLogLog are not accurate, and the error rate is about 0.81%.

Using this command will change HyperLogLog and use 8 bytes to store the last calculated base. So, technically speaking, PFCOUNT is a write command.

(5) Performance issues

Even though it theoretically takes a long time to process an intensive HyperLogLog, the PFCOUNT command still has high performance when only one key is specified. This is because PFCOUNT caches the base of the last calculation, and this base does not change all the time, because the PFADD command does not update the register in most cases. Therefore, the effect of hundreds of requests per second can be achieved.

When using the PFCOUNT command to process multiple keys, HyperLogLog will be merged. This step is very time-consuming. More importantly, the calculated cardinality of the union cannot be cached. When using multiple keys, the execution of PFCOUNT can take some time (usually on the order of milliseconds), so overuse is not recommended.

It should be noted that the single-key and multi-key execution semantics of this command are different and have different performance. Excessive use of multi-key execution semantics is not recommended.

3.3 PFMERGE

Earliest available version: 2.8.9. Time complexity: O(N), N is the number of HyperLogLogs to be merged.

Multiple HyperLogLogs can be merged into one HyperLogLog through the PFMERGE command. The cardinality estimate of the merged HyperLogLog is calculated by taking the union of all given HyperLogLogs. The calculated result is saved to the specified key.

Syntax format:

PFMERGE destkey sourcekey [sourcekey ...]
Copy after login

Return value:

Return OK.

Example:

127.0.0.1:6379> PFADD hll1 foo bar zap a
(integer) 1
127.0.0.1:6379> PFADD hll2 a b c foo
(integer) 1
127.0.0.1:6379> PFMERGE hll3 hll1 hll2
OK
127.0.0.1:6379> PFCOUNT hll3
(integer) 6
Copy after login

The above is the detailed content of How to implement Redis using HyperLogLog. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1653
14
PHP Tutorial
1251
29
C# Tutorial
1224
24
How to build the redis cluster mode How to build the redis cluster mode Apr 10, 2025 pm 10:15 PM

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear redis data How to clear redis data Apr 10, 2025 pm 10:06 PM

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

How to read redis queue How to read redis queue Apr 10, 2025 pm 10:12 PM

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to configure Lua script execution time in centos redis How to configure Lua script execution time in centos redis Apr 14, 2025 pm 02:12 PM

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

How to set the redis expiration policy How to set the redis expiration policy Apr 10, 2025 pm 10:03 PM

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

How to use the redis command line How to use the redis command line Apr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

How to implement redis counter How to implement redis counter Apr 10, 2025 pm 10:21 PM

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

How to optimize the performance of debian readdir How to optimize the performance of debian readdir Apr 13, 2025 am 08:48 AM

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

See all articles