Why is Redis so fast using single thread?
Why does Redis use single thread?
Overhead of multi-threading
If there is no good system design, using multi-threading will usually lead to the results shown on the right (note the ordinate). When you first increase the number of threads, the system throughput rate will increase. When you further increase the number of threads, the system throughput rate will increase slowly or even decrease.
The key bottleneck is: There are usually shared resources in the system that are accessed by multiple threads at the same time. In order to ensure the correctness of shared resources, additional mechanisms are needed to ensure that threads Security, such as locking, comes with additional overhead.
For example, take the most commonly used List
type. Assume that Redis adopts a multi-thread design, and there are two threads A and B doing on
List respectively. For LPUSH
and LPUSH
operations, in order to achieve the same result every time they are executed, that is, [B thread takes out the data put by A thread], these two processes need to be executed serially. This is the concurrent access control problem of shared resources faced by the multi-threaded programming model.
Concurrency access control has always been a difficult issue in multi-threaded development: if you simply use a mutex, even if threads are added, most threads will It is also waiting to acquire the mutex lock, and the parallel becomes serial. The system throughput rate does not increase with the increase of threads.
At the same time, adding concurrent access control will also reduce the readability and maintainability of the system code, so Redis simply adopts single-threaded mode.
Why is Redis so fast using single thread?
The reason why single thread is used is the result of many aspects of Redis designers' evaluation.
Most operations of Redis are completed in memory
-
Using efficient data structures, such as hash tables and skip tables
Adopts a multiplexing mechanism so that it can handle a large number of client requests concurrently in network IO operations and achieve high throughput
Since Redis uses a single thread for IO. If the thread is blocked, it cannot be multiplexed. So it is not difficult to imagine that Redis must have been designed for potential blocking points in network and IO operations.
Potential blocking points of network and IO operations
In network communication, in order to process a Get request, the server needs to listen to the client request (bind/listen
), and The client establishes a connection (accept
), reads the request from the socket (recv
), parses the request sent by the client (parse
), and finally returns it to the client Result(send
).
The most basic single-threaded implementation is to perform the above operations in sequence.
The accept and recv operations marked in red above are potential blocking points:
When Redis monitors a connection request, But when the connection cannot be successfully established, it will be blocked in the
accept()
function, and other clients cannot establish a connection with Redis at this timeWhen When Redis reads data from a client through
recv()
, if the data has not arrived, it will always block
High performance based on multiplexing IO model
In order to solve the blocking problem in IO, Redis adopts the Linux IO multiplexing mechanism, which allows multiple listening sockets and connected sockets to exist simultaneously in the kernel (select/epoll
).
The kernel will always listen for connections or data requests on these sockets. Redis will process incoming requests, thereby achieving the effect of one thread processing multiple IO streams.
At this time, the Redis thread will not be blocked on a specific client request processing, so it can connect to multiple clients at the same time and process requests.
Callback mechanism
select/epoll Once it detects that a request arrives on FD, the corresponding event will be triggered and put into a queue. The Redis thread will continuously process the event queue. So event-based callbacks are implemented.
For example, Redis will register the accept
and get
callback functions for Accept and Read events. When the Linux kernel monitors a connection request or a read data request, it will trigger the Accept event and Read event. At this time, the kernel will call back the corresponding accept
and get
functions of Redis. deal with.
Performance bottlenecks of Redis
After the above analysis, although multiple client requests can be monitored at the same time through the multiplexing mechanism, Redis still has some performance bottlenecks, which is why we A situation that needs to be avoided in daily programming.
1. Time-consuming operations
If any request takes a long time in Redis, it will have an impact on the performance of the entire server. Subsequent requests must wait for the previous time-consuming request to be processed before they can be processed.
We need to avoid this when designing business scenarios; Redis's lazy-free
mechanism also puts the time-consuming operation of releasing memory in an asynchronous thread for execution.
2. High concurrency scenario
When the amount of concurrency is very large, there is a performance bottleneck in single-threaded reading and writing of client IO data. Although the IO multiplexing mechanism is used, it can still only be single-threaded. Reading the client's data in sequence cannot utilize multiple CPU cores.
Redis in 6.0 can use CPU multi-core and multi-threading to read and write client data, but only the reading and writing for the client are parallel, and the actual operation of each command is still single-threaded.
Other interesting questions related to Redis
Take this opportunity to also ask a few interesting questions related to redis.
Why use Redis? Isn’t it bad to directly access the memory?
This one is actually not very clearly defined. For some data that does not change frequently, it can be placed directly in the memory. It does not have to be placed in Redis. It can be placed in the memory. . There may be consistency issues when updating data, that is, the data on only one server may be modified, so the data only exists in local memory. Accessing the Redis server can solve the consistency problem, using Redis.
What should I do if there is too much data that cannot be stored in the memory? For example, if I want to cache 100G of data, what should I do?
There is also an advertisement here. Tair is Taobao's open source distributed KV cache system. It inherits rich operations from Redis. Theoretically, the total data volume is unlimited. It is aimed at usability and resiliency. The scalability and reliability have also been upgraded. Interested friends can find out~
The above is the detailed content of Why is Redis so fast using single thread?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
