Home Backend Development PHP Tutorial How to perform deep learning-based speech recognition and synthesis in PHP?

How to perform deep learning-based speech recognition and synthesis in PHP?

May 20, 2023 pm 10:31 PM
php deep learning Speech recognition and synthesis

In the past few decades, speech technology has been developing rapidly, which provides people with great conveniences, such as speech recognition, speech synthesis, etc. Nowadays, with the rapid development of AI technology, deep learning has become the mainstream method of speech technology, and has gradually replaced the traditional rule-based speech recognition and synthesis methods. As a widely used programming language, how can PHP use deep learning for speech recognition and synthesis? This article will introduce in detail how to perform speech recognition and synthesis based on deep learning in PHP.

1. Basics of deep learning

Deep learning is a machine learning method, the core of which is a multi-layer neural network. Different from traditional shallow networks, deep learning has the capability of multi-layer feature extraction and abstraction, and can quickly process large-scale data and extract key information. In the field of speech recognition and synthesis, the development of deep learning has greatly improved the accuracy of speech recognition and synthesis.

2. Speech recognition

  1. Data collection and preprocessing

Before speech recognition, we need to collect a certain amount of speech data and perform preprocessing. Preprocessing tasks include signal noise reduction, feature extraction, etc. Among them, the purpose of signal noise reduction is to remove noise interference in speech signals. Commonly used noise reduction algorithms include spectral subtraction, Wiener filtering algorithm, etc. The purpose of feature extraction is to convert the speech signal into a form that can be recognized by the neural network. The commonly used feature extraction algorithm is the MFCC algorithm.

  1. Building a model

Building a model is the core content of speech recognition. We can use the convolutional neural network (CNN) or recurrent neural network (RNN) in deep learning. to achieve speech recognition. Among them, CNN is suitable for identifying short-term signals in speech, while RNN is suitable for processing long-term sequence signals.

  1. Training model

After the model is established, we need to train and continuously adjust the model parameters through the back propagation algorithm so that the model can accurately recognize speech signals. Training models requires a lot of computing resources and time, and deep learning frameworks such as TensorFlow can help us accomplish this task.

  1. Testing and Optimization

After training is completed, we need to test and optimize the model. During testing, speech data that has not been trained by the model is used for recognition, and the effect of the model is tested through evaluation indicators such as accuracy and recall. During optimization, the model and parameters need to be adjusted to improve its recognition accuracy and robustness.

3. Speech synthesis

  1. Data collection and preprocessing

Similar to speech recognition, a large amount of speech data also needs to be collected before speech synthesis. and perform preprocessing. Preprocessing tasks include signal noise reduction, syllable pause removal, etc. At the same time, we also need to label the speech data in order to build a model.

  1. Building a model

Building a model is the core content of speech synthesis. We can use the generative adversarial network (GAN) or variational autoencoder (VAE) in deep learning. ) to implement speech synthesis. Among them, GAN can generate realistic speech signals, but requires a long training time; while VAE can achieve fast speech synthesis, but the quality of its synthesized sounds may be poor.

  1. Training model

Similar to speech recognition, speech synthesis requires a large amount of computing resources and time. It is necessary to continuously adjust the model parameters through the back propagation algorithm to make it Able to generate realistic speech signals. At the same time, we can achieve different synthesis effects by controlling the input of the model.

  1. Testing and Optimization

Similar to speech recognition, speech synthesis also requires testing and optimization. During testing, artificial listening and other methods need to be used to evaluate the quality and accuracy of the synthesized sound; during optimization, the model and parameters need to be adjusted to improve its synthesis effect and robustness.

In summary, speech recognition and synthesis based on deep learning have been widely used in PHP. Whether it is optimizing user experience or improving work efficiency, voice technology will play an increasingly important role in future development.

The above is the detailed content of How to perform deep learning-based speech recognition and synthesis in PHP?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1670
14
PHP Tutorial
1276
29
C# Tutorial
1256
24
PHP vs. Python: Understanding the Differences PHP vs. Python: Understanding the Differences Apr 11, 2025 am 12:15 AM

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP: A Key Language for Web Development PHP: A Key Language for Web Development Apr 13, 2025 am 12:08 AM

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python: Comparing Two Popular Programming Languages PHP and Python: Comparing Two Popular Programming Languages Apr 14, 2025 am 12:13 AM

PHP and Python each have their own advantages, and choose according to project requirements. 1.PHP is suitable for web development, especially for rapid development and maintenance of websites. 2. Python is suitable for data science, machine learning and artificial intelligence, with concise syntax and suitable for beginners.

PHP in Action: Real-World Examples and Applications PHP in Action: Real-World Examples and Applications Apr 14, 2025 am 12:19 AM

PHP is widely used in e-commerce, content management systems and API development. 1) E-commerce: used for shopping cart function and payment processing. 2) Content management system: used for dynamic content generation and user management. 3) API development: used for RESTful API development and API security. Through performance optimization and best practices, the efficiency and maintainability of PHP applications are improved.

The Enduring Relevance of PHP: Is It Still Alive? The Enduring Relevance of PHP: Is It Still Alive? Apr 14, 2025 am 12:12 AM

PHP is still dynamic and still occupies an important position in the field of modern programming. 1) PHP's simplicity and powerful community support make it widely used in web development; 2) Its flexibility and stability make it outstanding in handling web forms, database operations and file processing; 3) PHP is constantly evolving and optimizing, suitable for beginners and experienced developers.

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP vs. Other Languages: A Comparison PHP vs. Other Languages: A Comparison Apr 13, 2025 am 12:19 AM

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python: Code Examples and Comparison PHP and Python: Code Examples and Comparison Apr 15, 2025 am 12:07 AM

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

See all articles