Table of Contents
1. Introduction
2. Data structure
2.1 Main structure of the memory pool
2.2 Large memory chain
2.3 Cleanup task chain
3. Memory structure diagram
3.1 Logic
4.6 大内存释放
4.7 分配并清空数据
4.8 回调文件清理
Home Operation and Maintenance Nginx How to implement nginx memory pool

How to implement nginx memory pool

May 17, 2023 pm 01:26 PM
nginx

1. Introduction

The latest stable version nginx1.20.2.
In order to allocate memory efficiently and quickly, and reduce memory fragmentation, nginx implements its own basic memory pool components.
Main implementation filesngx_palloc.h, ngx_palloc.c

2. Data structure

2.1 Main structure of the memory pool

typedef struct {
    u_char               *last;
    u_char               *end;
    ngx_pool_t           *next;
    ngx_uint_t            failed;
} ngx_pool_data_t;

struct ngx_pool_s {
    ngx_pool_data_t       d;
    size_t                max;
    ngx_pool_t           *current;
    ngx_chain_t          *chain;
    ngx_pool_large_t     *large;
    ngx_pool_cleanup_t   *cleanup;
    ngx_log_t            *log;
};
Copy after login

The first memory pool One member is a structure:
Use the ngx_pool_data_t structure to represent the current memory pool information.
last: The address to be allocated next time
end: The end address of the memory pool
next: Memory pool linked list, connecting multiple memory pools

max
The entire memory pool The maximum size

current
points to starting from the current memory pool to find available memory

chain
buffer used, this does not involve

large
when When the required memory is greater than the maximum size of the memory pool, it needs to be allocated directly through malloc and then organized into a linked list

cleanup
Callback linked list for cleanup work

log
Log handle

2.2 Large memory chain

When the memory to be allocated is larger than the maximum size of the memory pool, the memory pool cannot satisfy the allocation, so it is allocated directly from the system and then forms a linked list for maintenance.

typedef struct ngx_pool_large_s  ngx_pool_large_t;

struct ngx_pool_large_s {
    ngx_pool_large_t     *next;
    void                 *alloc;
};
Copy after login

2.3 Cleanup task chain

There is a linked list of callback tasks. When the memory pool is destroyed, this linked list will be traversed in sequence and the handlers will be called back one by one to clean up.

typedef void (*ngx_pool_cleanup_pt)(void *data);

typedef struct ngx_pool_cleanup_s  ngx_pool_cleanup_t;

struct ngx_pool_cleanup_s {
    ngx_pool_cleanup_pt   handler;
    void                 *data;
    ngx_pool_cleanup_t   *next;
};
Copy after login

3. Memory structure diagram

3.1 Logic

How to implement nginx memory pool

##3.2 Actual

How to implement nginx memory pool

It can be seen that many nodes are allocated from the memory pool, so you can focus on the actual data without worrying about other details.

4. Implementation

4.1 Create a memory pool

/*
 * NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86.
 * On Windows NT it decreases a number of locked pages in a kernel.
 */
#define NGX_MAX_ALLOC_FROM_POOL  (ngx_pagesize - 1)

#define NGX_DEFAULT_POOL_SIZE    (16 * 1024)
Copy after login
ngx_pool_t *
ngx_create_pool(size_t size, ngx_log_t *log)
{
    ngx_pool_t  *p;

    p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
    if (p == NULL) {
        return NULL;
    }

    p->d.last = (u_char *) p + sizeof(ngx_pool_t);
    p->d.end = (u_char *) p + size;
    p->d.next = NULL;
    p->d.failed = 0;

    size = size - sizeof(ngx_pool_t);
    p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;

    p->current = p;
    p->chain = NULL;
    p->large = NULL;
    p->cleanup = NULL;
    p->log = log;

    return p;
}
Copy after login

As you can see from the code, the maximum memory pool does not exceed the size of pagesize

How to implement nginx memory pool

4.2 Allocate space from the memory pool

The allocation function is divided into memory alignment and memory misalignment, but this only controls the allocation of space in the memory pool and does not control large memory allocation.

(1) Allocate small space

  • Memory alignment

    ngx_palloc

  • Memory misalignment

    ngx_pnalloc

  • void *
    ngx_palloc(ngx_pool_t *pool, size_t size)
    {
    #if !(NGX_DEBUG_PALLOC)
        if (size <= pool->max) {
            return ngx_palloc_small(pool, size, 1);
        }
    #endif
    
        return ngx_palloc_large(pool, size);
    }
    Copy after login
When the space that needs to be allocated is less than max, the small memory allocation method will be used (that is, allocating space from the memory pool), and ngx_pnalloc is just The last parameter when calling ngx_palloc_small is 0.

Start traversing the memory pool pointed to by pool->current, looking for a space that meets the allocation size, and if found, return the first address

static ngx_inline void *
ngx_palloc_small(ngx_pool_t *pool, size_t size, ngx_uint_t align)
{
    u_char      *m;
    ngx_pool_t  *p;

    p = pool->current;

    do {
        m = p->d.last;

        if (align) {
            m = ngx_align_ptr(m, NGX_ALIGNMENT);
        }

        if ((size_t) (p->d.end - m) >= size) {
            p->d.last = m + size;

            return m;
        }

        p = p->d.next;

    } while (p);

    return ngx_palloc_block(pool, size);
}
Copy after login

When the allocation conditions cannot be met in the existing memory pool , create a new memory pool

static void *
ngx_palloc_block(ngx_pool_t *pool, size_t size)
{
    u_char      *m;
    size_t       psize;
    ngx_pool_t  *p, *new;

    psize = (size_t) (pool->d.end - (u_char *) pool);

    m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);
    if (m == NULL) {
        return NULL;
    }

    new = (ngx_pool_t *) m;

    new->d.end = m + psize;
    new->d.next = NULL;
    new->d.failed = 0;

    m += sizeof(ngx_pool_data_t);
    m = ngx_align_ptr(m, NGX_ALIGNMENT);
    new->d.last = m + size;

    for (p = pool->current; p->d.next; p = p->d.next) {
        if (p->d.failed++ > 4) {
            pool->current = p->d.next;
        }
    }

    p->d.next = new;

    return m;
}
Copy after login

Among them, after creating the new memory pool, another traversal is performed, and the failed count is increased by one. When it is greater than 4, this memory pool will be skipped, and the failed count will be skipped next time. Don't start the search from it.

It is considered that you cannot meet the allocation more than 4 times, and you will not be able to meet the allocation in the future. You will no longer be used. Reduce the number of traversals and speed up the efficiency of successful allocation

(2) Allocate large space

static void *
ngx_palloc_large(ngx_pool_t *pool, size_t size)
{
    void              *p;
    ngx_uint_t         n;
    ngx_pool_large_t  *large;

    p = ngx_alloc(size, pool->log);
    if (p == NULL) {
        return NULL;
    }

    n = 0;

    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
            large->alloc = p;
            return p;
        }

        if (n++ > 3) {
            break;
        }
    }

    large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1);
    if (large == NULL) {
        ngx_free(p);
        return NULL;
    }

    large->alloc = p;
    large->next = pool->large;
    pool->large = large;

    return p;
}
Copy after login

It can be seen that in order to avoid allocating space, the large chain is traversed to find reusable nodes. However, if the linked list is too large, it may be too slow, so only the first three are searched. If none of the three are found, they are allocated directly ( Moreover, the nodes are also allocated from the memory pool, so during subsequent cleanup, you do not need to manage the nodes, you only need to release the requested large memory itself)

Memory Alignment

void *
ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment)
{
    void              *p;
    ngx_pool_large_t  *large;

    p = ngx_memalign(alignment, size, pool->log);
    if (p == NULL) {
        return NULL;
    }

    large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1);
    if (large == NULL) {
        ngx_free(p);
        return NULL;
    }

    large->alloc = p;
    large->next = pool->large;
    pool->large = large;

    return p;
}
Copy after login

4.3 Register Cleanup Task

ngx_pool_cleanup_t *
ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)
{
    ngx_pool_cleanup_t  *c;

    c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
    if (c == NULL) {
        return NULL;
    }

    if (size) {
        c->data = ngx_palloc(p, size);
        if (c->data == NULL) {
            return NULL;
        }

    } else {
        c->data = NULL;
    }

    c->handler = NULL;
    c->next = p->cleanup;

    p->cleanup = c;

    ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);

    return c;
}
Copy after login

It can be seen that only one node is allocated here, and the handler and data data are not set, so it depends on the specific caller for settings, because the allocated node is returned here.

For example, in the function

ngx_create_temp_file

ngx_int_t
ngx_create_temp_file(ngx_file_t *file, ngx_path_t *path, ngx_pool_t *pool,
    ngx_uint_t persistent, ngx_uint_t clean, ngx_uint_t access)
{
    ...

    cln = ngx_pool_cleanup_add(pool, sizeof(ngx_pool_cleanup_file_t));
    if (cln == NULL) {
        return NGX_ERROR;
    }

       ...
        file->fd = ngx_open_tempfile(file->name.data, persistent, access);
				...
        if (file->fd != NGX_INVALID_FILE) {

            cln->handler = clean ? ngx_pool_delete_file : ngx_pool_cleanup_file;
            clnf = cln->data;

            clnf->fd = file->fd;
            clnf->name = file->name.data;
            clnf->log = pool->log;

            return NGX_OK;
        }
			...
}
Copy after login

generates a temporary file and registers the fd and file name to the cleanup task. If subsequent files are not used, no special processing is required. The memory pool will be cleaned up uniformly when it is released.

4.4 Reset the memory pool

  • Release large memory

  • Reset the last in memory

  • Reset failed count

  • void
    ngx_reset_pool(ngx_pool_t *pool)
    {
        ngx_pool_t        *p;
        ngx_pool_large_t  *l;
    
        for (l = pool->large; l; l = l->next) {
            if (l->alloc) {
                ngx_free(l->alloc);
            }
        }
    
        for (p = pool; p; p = p->d.next) {
            p->d.last = (u_char *) p + sizeof(ngx_pool_t);
            p->d.failed = 0;
        }
    
        pool->current = pool;
        pool->chain = NULL;
        pool->large = NULL;
    }
    Copy after login
There is a phenomenon here:

When there is insufficient space in the memory pool,
ngx_palloc_block will be called to create a new memory pool, and last points to m = sizeof(ngx_pool_data_t);, so the current newly allocated memory pool will be larger than the available size of the first memory pool (max,current,chain,large, cleanup, log) the size of these fields (maybe not that much, because it needs to be aligned, maybe it will be exactly the same after alignment), and now when resetting, p->d.last = (u_char *) p sizeof(ngx_pool_t);The available size of each memory pool becomes the same.

4.5 Destroy the memory pool

  • Callback cleanup task

  • Release large memory

  • Release the memory pool itself

void
ngx_destroy_pool(ngx_pool_t *pool)
{
    ngx_pool_t          *p, *n;
    ngx_pool_large_t    *l;
    ngx_pool_cleanup_t  *c;

    for (c = pool->cleanup; c; c = c->next) {
        if (c->handler) {
            ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
                           "run cleanup: %p", c);
            c->handler(c->data);
        }
    }


    for (l = pool->large; l; l = l->next) {
        if (l->alloc) {
            ngx_free(l->alloc);
        }
    }

    for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) {
        ngx_free(p);

        if (n == NULL) {
            break;
        }
    }
}
Copy after login

4.6 大内存释放

通过遍历找到要释放的节点,将内存释放,并且将alloc设置成NULL,则有了节点重用的情况。

ngx_int_t
ngx_pfree(ngx_pool_t *pool, void *p)
{
    ngx_pool_large_t  *l;

    for (l = pool->large; l; l = l->next) {
        if (p == l->alloc) {
            ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
                           "free: %p", l->alloc);
            ngx_free(l->alloc);
            l->alloc = NULL;

            return NGX_OK;
        }
    }

    return NGX_DECLINED;
}
Copy after login

4.7 分配并清空数据

void *
ngx_pcalloc(ngx_pool_t *pool, size_t size)
{
    void *p;

    p = ngx_palloc(pool, size);
    if (p) {
        ngx_memzero(p, size);
    }

    return p;
}
Copy after login

正常分配的空间中都是垃圾数据,所以当前函数在分配空间后,将分配的空间清零。

4.8 回调文件清理

(1) 手动关闭指定fd

遍历清理任务,找到ngx_pool_cleanup_file的handler,如果是要关闭的fd,则回调

void
ngx_pool_run_cleanup_file(ngx_pool_t *p, ngx_fd_t fd)
{
    ngx_pool_cleanup_t       *c;
    ngx_pool_cleanup_file_t  *cf;

    for (c = p->cleanup; c; c = c->next) {
        if (c->handler == ngx_pool_cleanup_file) {

            cf = c->data;

            if (cf->fd == fd) {
                c->handler(cf);
                c->handler = NULL;
                return;
            }
        }
    }
}
Copy after login

(2) 关闭fd

void
ngx_pool_cleanup_file(void *data)
{
    ngx_pool_cleanup_file_t  *c = data;

    ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d",
                   c->fd);

    if (ngx_close_file(c->fd) == NGX_FILE_ERROR) {
        ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno,
                      ngx_close_file_n " \"%s\" failed", c->name);
    }
}
Copy after login

(3) 删除文件并关闭fd

void
ngx_pool_delete_file(void *data)
{
    ngx_pool_cleanup_file_t  *c = data;

    ngx_err_t  err;

    ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d %s",
                   c->fd, c->name);

    if (ngx_delete_file(c->name) == NGX_FILE_ERROR) {
        err = ngx_errno;

        if (err != NGX_ENOENT) {
            ngx_log_error(NGX_LOG_CRIT, c->log, err,
                          ngx_delete_file_n " \"%s\" failed", c->name);
        }
    }

    if (ngx_close_file(c->fd) == NGX_FILE_ERROR) {
        ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno,
                      ngx_close_file_n " \"%s\" failed", c->name);
    }
}
Copy after login

The above is the detailed content of How to implement nginx memory pool. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1655
14
PHP Tutorial
1254
29
C# Tutorial
1228
24
How to configure nginx in Windows How to configure nginx in Windows Apr 14, 2025 pm 12:57 PM

How to configure Nginx in Windows? Install Nginx and create a virtual host configuration. Modify the main configuration file and include the virtual host configuration. Start or reload Nginx. Test the configuration and view the website. Selectively enable SSL and configure SSL certificates. Selectively set the firewall to allow port 80 and 443 traffic.

How to check whether nginx is started How to check whether nginx is started Apr 14, 2025 pm 01:03 PM

How to confirm whether Nginx is started: 1. Use the command line: systemctl status nginx (Linux/Unix), netstat -ano | findstr 80 (Windows); 2. Check whether port 80 is open; 3. Check the Nginx startup message in the system log; 4. Use third-party tools, such as Nagios, Zabbix, and Icinga.

How to check the name of the docker container How to check the name of the docker container Apr 15, 2025 pm 12:21 PM

You can query the Docker container name by following the steps: List all containers (docker ps). Filter the container list (using the grep command). Gets the container name (located in the "NAMES" column).

How to start containers by docker How to start containers by docker Apr 15, 2025 pm 12:27 PM

Docker container startup steps: Pull the container image: Run "docker pull [mirror name]". Create a container: Use "docker create [options] [mirror name] [commands and parameters]". Start the container: Execute "docker start [Container name or ID]". Check container status: Verify that the container is running with "docker ps".

How to create containers for docker How to create containers for docker Apr 15, 2025 pm 12:18 PM

Create a container in Docker: 1. Pull the image: docker pull [mirror name] 2. Create a container: docker run [Options] [mirror name] [Command] 3. Start the container: docker start [Container name]

How to check nginx version How to check nginx version Apr 14, 2025 am 11:57 AM

The methods that can query the Nginx version are: use the nginx -v command; view the version directive in the nginx.conf file; open the Nginx error page and view the page title.

How to configure cloud server domain name in nginx How to configure cloud server domain name in nginx Apr 14, 2025 pm 12:18 PM

How to configure an Nginx domain name on a cloud server: Create an A record pointing to the public IP address of the cloud server. Add virtual host blocks in the Nginx configuration file, specifying the listening port, domain name, and website root directory. Restart Nginx to apply the changes. Access the domain name test configuration. Other notes: Install the SSL certificate to enable HTTPS, ensure that the firewall allows port 80 traffic, and wait for DNS resolution to take effect.

What to do if nginx server is hung What to do if nginx server is hung Apr 14, 2025 am 11:42 AM

When the Nginx server goes down, you can perform the following troubleshooting steps: Check that the nginx process is running. View the error log for error messages. Check the syntax of nginx configuration. Make sure nginx has the permissions you need to access the file. Check file descriptor to open limits. Confirm that nginx is listening on the correct port. Add firewall rules to allow nginx traffic. Check reverse proxy settings, including backend server availability. For further assistance, please contact technical support.

See all articles