How to implement nginx memory pool
1. Introduction
The latest stable version nginx1.20.2.
In order to allocate memory efficiently and quickly, and reduce memory fragmentation, nginx implements its own basic memory pool components.
Main implementation filesngx_palloc.h, ngx_palloc.c
2. Data structure
2.1 Main structure of the memory pool
typedef struct { u_char *last; u_char *end; ngx_pool_t *next; ngx_uint_t failed; } ngx_pool_data_t; struct ngx_pool_s { ngx_pool_data_t d; size_t max; ngx_pool_t *current; ngx_chain_t *chain; ngx_pool_large_t *large; ngx_pool_cleanup_t *cleanup; ngx_log_t *log; };
The first memory pool One member is a structure:
Use the ngx_pool_data_t structure to represent the current memory pool information.
last: The address to be allocated next time
end: The end address of the memory pool
next: Memory pool linked list, connecting multiple memory pools
max
The entire memory pool The maximum size
current
points to starting from the current memory pool to find available memory
chain
buffer used, this does not involve
large
when When the required memory is greater than the maximum size of the memory pool, it needs to be allocated directly through malloc and then organized into a linked list
cleanup
Callback linked list for cleanup work
log
Log handle
2.2 Large memory chain
When the memory to be allocated is larger than the maximum size of the memory pool, the memory pool cannot satisfy the allocation, so it is allocated directly from the system and then forms a linked list for maintenance.
typedef struct ngx_pool_large_s ngx_pool_large_t; struct ngx_pool_large_s { ngx_pool_large_t *next; void *alloc; };
2.3 Cleanup task chain
There is a linked list of callback tasks. When the memory pool is destroyed, this linked list will be traversed in sequence and the handlers will be called back one by one to clean up.
typedef void (*ngx_pool_cleanup_pt)(void *data); typedef struct ngx_pool_cleanup_s ngx_pool_cleanup_t; struct ngx_pool_cleanup_s { ngx_pool_cleanup_pt handler; void *data; ngx_pool_cleanup_t *next; };
3. Memory structure diagram
3.1 Logic
/*
* NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86.
* On Windows NT it decreases a number of locked pages in a kernel.
*/
#define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1)
#define NGX_DEFAULT_POOL_SIZE (16 * 1024)
Copy after loginngx_pool_t *
ngx_create_pool(size_t size, ngx_log_t *log)
{
ngx_pool_t *p;
p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
if (p == NULL) {
return NULL;
}
p->d.last = (u_char *) p + sizeof(ngx_pool_t);
p->d.end = (u_char *) p + size;
p->d.next = NULL;
p->d.failed = 0;
size = size - sizeof(ngx_pool_t);
p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;
p->current = p;
p->chain = NULL;
p->large = NULL;
p->cleanup = NULL;
p->log = log;
return p;
}
Copy after login
As you can see from the code, the maximum memory pool does not exceed the size of pagesize/* * NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86. * On Windows NT it decreases a number of locked pages in a kernel. */ #define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1) #define NGX_DEFAULT_POOL_SIZE (16 * 1024)
ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log) { ngx_pool_t *p; p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log); if (p == NULL) { return NULL; } p->d.last = (u_char *) p + sizeof(ngx_pool_t); p->d.end = (u_char *) p + size; p->d.next = NULL; p->d.failed = 0; size = size - sizeof(ngx_pool_t); p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL; p->current = p; p->chain = NULL; p->large = NULL; p->cleanup = NULL; p->log = log; return p; }
- Memory alignment
ngx_palloc
- Memory misalignment
ngx_pnalloc
void * ngx_palloc(ngx_pool_t *pool, size_t size) { #if !(NGX_DEBUG_PALLOC) if (size <= pool->max) { return ngx_palloc_small(pool, size, 1); } #endif return ngx_palloc_large(pool, size); }
static ngx_inline void * ngx_palloc_small(ngx_pool_t *pool, size_t size, ngx_uint_t align) { u_char *m; ngx_pool_t *p; p = pool->current; do { m = p->d.last; if (align) { m = ngx_align_ptr(m, NGX_ALIGNMENT); } if ((size_t) (p->d.end - m) >= size) { p->d.last = m + size; return m; } p = p->d.next; } while (p); return ngx_palloc_block(pool, size); }
static void * ngx_palloc_block(ngx_pool_t *pool, size_t size) { u_char *m; size_t psize; ngx_pool_t *p, *new; psize = (size_t) (pool->d.end - (u_char *) pool); m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log); if (m == NULL) { return NULL; } new = (ngx_pool_t *) m; new->d.end = m + psize; new->d.next = NULL; new->d.failed = 0; m += sizeof(ngx_pool_data_t); m = ngx_align_ptr(m, NGX_ALIGNMENT); new->d.last = m + size; for (p = pool->current; p->d.next; p = p->d.next) { if (p->d.failed++ > 4) { pool->current = p->d.next; } } p->d.next = new; return m; }
It is considered that you cannot meet the allocation more than 4 times, and you will not be able to meet the allocation in the future. You will no longer be used. Reduce the number of traversals and speed up the efficiency of successful allocation
static void * ngx_palloc_large(ngx_pool_t *pool, size_t size) { void *p; ngx_uint_t n; ngx_pool_large_t *large; p = ngx_alloc(size, pool->log); if (p == NULL) { return NULL; } n = 0; for (large = pool->large; large; large = large->next) { if (large->alloc == NULL) { large->alloc = p; return p; } if (n++ > 3) { break; } } large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1); if (large == NULL) { ngx_free(p); return NULL; } large->alloc = p; large->next = pool->large; pool->large = large; return p; }
void * ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment) { void *p; ngx_pool_large_t *large; p = ngx_memalign(alignment, size, pool->log); if (p == NULL) { return NULL; } large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1); if (large == NULL) { ngx_free(p); return NULL; } large->alloc = p; large->next = pool->large; pool->large = large; return p; }
ngx_pool_cleanup_t *
ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)
{
ngx_pool_cleanup_t *c;
c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
if (c == NULL) {
return NULL;
}
if (size) {
c->data = ngx_palloc(p, size);
if (c->data == NULL) {
return NULL;
}
} else {
c->data = NULL;
}
c->handler = NULL;
c->next = p->cleanup;
p->cleanup = c;
ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);
return c;
}
Copy after login
It can be seen that only one node is allocated here, and the handler and data data are not set, so it depends on the specific caller for settings, because the allocated node is returned here. For example, in the function ngx_pool_cleanup_t * ngx_pool_cleanup_add(ngx_pool_t *p, size_t size) { ngx_pool_cleanup_t *c; c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t)); if (c == NULL) { return NULL; } if (size) { c->data = ngx_palloc(p, size); if (c->data == NULL) { return NULL; } } else { c->data = NULL; } c->handler = NULL; c->next = p->cleanup; p->cleanup = c; ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c); return c; }
ngx_create_temp_file
ngx_int_t ngx_create_temp_file(ngx_file_t *file, ngx_path_t *path, ngx_pool_t *pool, ngx_uint_t persistent, ngx_uint_t clean, ngx_uint_t access) { ... cln = ngx_pool_cleanup_add(pool, sizeof(ngx_pool_cleanup_file_t)); if (cln == NULL) { return NGX_ERROR; } ... file->fd = ngx_open_tempfile(file->name.data, persistent, access); ... if (file->fd != NGX_INVALID_FILE) { cln->handler = clean ? ngx_pool_delete_file : ngx_pool_cleanup_file; clnf = cln->data; clnf->fd = file->fd; clnf->name = file->name.data; clnf->log = pool->log; return NGX_OK; } ... }
- Release large memory
- Reset the last in memory
- Reset failed count
void ngx_reset_pool(ngx_pool_t *pool) { ngx_pool_t *p; ngx_pool_large_t *l; for (l = pool->large; l; l = l->next) { if (l->alloc) { ngx_free(l->alloc); } } for (p = pool; p; p = p->d.next) { p->d.last = (u_char *) p + sizeof(ngx_pool_t); p->d.failed = 0; } pool->current = pool; pool->chain = NULL; pool->large = NULL; }
When there is insufficient space in the memory pool,
ngx_palloc_block will be called to create a new memory pool, and last points to
m = sizeof(ngx_pool_data_t);, so the current newly allocated memory pool will be larger than the available size of the first memory pool (max,current,chain,large, cleanup, log) the size of these fields (maybe not that much, because it needs to be aligned, maybe it will be exactly the same after alignment), and now when resetting,
p->d.last = (u_char *) p sizeof(ngx_pool_t);The available size of each memory pool becomes the same.
- Callback cleanup task
- Release large memory
- Release the memory pool itself
void ngx_destroy_pool(ngx_pool_t *pool) { ngx_pool_t *p, *n; ngx_pool_large_t *l; ngx_pool_cleanup_t *c; for (c = pool->cleanup; c; c = c->next) { if (c->handler) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "run cleanup: %p", c); c->handler(c->data); } } for (l = pool->large; l; l = l->next) { if (l->alloc) { ngx_free(l->alloc); } } for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) { ngx_free(p); if (n == NULL) { break; } } }
4.6 大内存释放
通过遍历找到要释放的节点,将内存释放,并且将alloc设置成NULL,则有了节点重用的情况。
ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p) { ngx_pool_large_t *l; for (l = pool->large; l; l = l->next) { if (p == l->alloc) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc); ngx_free(l->alloc); l->alloc = NULL; return NGX_OK; } } return NGX_DECLINED; }
4.7 分配并清空数据
void * ngx_pcalloc(ngx_pool_t *pool, size_t size) { void *p; p = ngx_palloc(pool, size); if (p) { ngx_memzero(p, size); } return p; }
正常分配的空间中都是垃圾数据,所以当前函数在分配空间后,将分配的空间清零。
4.8 回调文件清理
(1) 手动关闭指定fd
遍历清理任务,找到ngx_pool_cleanup_file的handler,如果是要关闭的fd,则回调
void ngx_pool_run_cleanup_file(ngx_pool_t *p, ngx_fd_t fd) { ngx_pool_cleanup_t *c; ngx_pool_cleanup_file_t *cf; for (c = p->cleanup; c; c = c->next) { if (c->handler == ngx_pool_cleanup_file) { cf = c->data; if (cf->fd == fd) { c->handler(cf); c->handler = NULL; return; } } } }
(2) 关闭fd
void ngx_pool_cleanup_file(void *data) { ngx_pool_cleanup_file_t *c = data; ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d", c->fd); if (ngx_close_file(c->fd) == NGX_FILE_ERROR) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, ngx_close_file_n " \"%s\" failed", c->name); } }
(3) 删除文件并关闭fd
void ngx_pool_delete_file(void *data) { ngx_pool_cleanup_file_t *c = data; ngx_err_t err; ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d %s", c->fd, c->name); if (ngx_delete_file(c->name) == NGX_FILE_ERROR) { err = ngx_errno; if (err != NGX_ENOENT) { ngx_log_error(NGX_LOG_CRIT, c->log, err, ngx_delete_file_n " \"%s\" failed", c->name); } } if (ngx_close_file(c->fd) == NGX_FILE_ERROR) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, ngx_close_file_n " \"%s\" failed", c->name); } }
The above is the detailed content of How to implement nginx memory pool. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











How to configure Nginx in Windows? Install Nginx and create a virtual host configuration. Modify the main configuration file and include the virtual host configuration. Start or reload Nginx. Test the configuration and view the website. Selectively enable SSL and configure SSL certificates. Selectively set the firewall to allow port 80 and 443 traffic.

How to confirm whether Nginx is started: 1. Use the command line: systemctl status nginx (Linux/Unix), netstat -ano | findstr 80 (Windows); 2. Check whether port 80 is open; 3. Check the Nginx startup message in the system log; 4. Use third-party tools, such as Nagios, Zabbix, and Icinga.

You can query the Docker container name by following the steps: List all containers (docker ps). Filter the container list (using the grep command). Gets the container name (located in the "NAMES" column).

Docker container startup steps: Pull the container image: Run "docker pull [mirror name]". Create a container: Use "docker create [options] [mirror name] [commands and parameters]". Start the container: Execute "docker start [Container name or ID]". Check container status: Verify that the container is running with "docker ps".

Create a container in Docker: 1. Pull the image: docker pull [mirror name] 2. Create a container: docker run [Options] [mirror name] [Command] 3. Start the container: docker start [Container name]

The methods that can query the Nginx version are: use the nginx -v command; view the version directive in the nginx.conf file; open the Nginx error page and view the page title.

How to configure an Nginx domain name on a cloud server: Create an A record pointing to the public IP address of the cloud server. Add virtual host blocks in the Nginx configuration file, specifying the listening port, domain name, and website root directory. Restart Nginx to apply the changes. Access the domain name test configuration. Other notes: Install the SSL certificate to enable HTTPS, ensure that the firewall allows port 80 traffic, and wait for DNS resolution to take effect.

When the Nginx server goes down, you can perform the following troubleshooting steps: Check that the nginx process is running. View the error log for error messages. Check the syntax of nginx configuration. Make sure nginx has the permissions you need to access the file. Check file descriptor to open limits. Confirm that nginx is listening on the correct port. Add firewall rules to allow nginx traffic. Check reverse proxy settings, including backend server availability. For further assistance, please contact technical support.
