Table of Contents
1. Import the Pandas library
2. Read data
3. View data
4. Select data
5. Data cleaning
6. Data analysis
7. Data Visualization
8. Export data
9. Practical cases
Home Backend Development Python Tutorial How to use Pandas for data analysis in Python

How to use Pandas for data analysis in Python

May 16, 2023 pm 06:29 PM
python pandas

First, make sure you have the Pandas library installed. If not, please use the following command to install it:

pip install pandas
Copy after login

1. Import the Pandas library

import pandas as pd
Copy after login

2. Read data

Using Pandas, you can easily read a variety of data Format, including CSV, Excel, JSON and HTML, etc. The following is an example of reading a CSV file:

data = pd.read_csv('data.csv')
Copy after login

The reading methods of other data formats are similar, such as reading Excel files:

data = pd.read_excel('data.xlsx')
Copy after login

3. View data

You can use head() function to view the first few rows of data (default is 5 rows):

print(data.head())
Copy after login

You can also use the tail() function to view the last few rows of data, And info() and describe() functions to view the statistical information of the data:

print(data.tail())
print(data.info())
print(data.describe())
Copy after login

4. Select data

There are many ways to select data , the following are some common methods:

  • Select a column: data['column_name']

  • Select multiple columns : data[['column1', 'column2']]

  • Select a row: data.loc[row_index]

  • Select a value: data.loc[row_index, 'column_name']

  • Select by condition: data [data['column_name'] > value]

5. Data cleaning

Before data analysis, the data usually needs to be cleaned. The following are some commonly used data cleaning methods:

  • Remove null values: data.dropna()

  • Replace null values Value: data.fillna(value)

  • Rename column name: data.rename(columns={'old_name': 'new_name'})

  • Data type conversion: data['column_name'].astype(new_type)

  • Remove duplicates Value: data.drop_duplicates()

6. Data analysis

Pandas provides rich data analysis functions. The following are some common methods:

  • Calculate the mean: data['column_name'].mean()

  • Calculate the median: data['column_name'].median()

  • Calculate the mode: data['column_name'].mode()

  • Calculate standard deviation: data['column_name'].std()

  • Calculate correlation: data. corr()

  • Data grouping: data.groupby('column_name')

7. Data Visualization

Pandas makes it easy to transform data into visual charts. First, you need to install the Matplotlib library:

pip install matplotlib
Copy after login

Then, use the following code to create a chart:

import matplotlib.pyplot as plt

data['column_name'].plot(kind='bar')
plt.show()
Copy after login

Other visualization chart types include line charts, pie charts, histograms, etc.:

data['column_name'].plot(kind='line')
data['column_name'].plot(kind='pie')
data['column_name'].plot(kind='hist')
plt.show()
Copy after login

8. Export data

Pandas can export data to a variety of formats, such as CSV, Excel, JSON, HTML, etc. The following is an example of exporting data to a CSV file:

data.to_csv('output.csv', index=False)
Copy after login

The export method for other data formats is similar, such as exporting to an Excel file:

data.to_excel('output.xlsx', index=False)
Copy after login

9. Practical cases

us Assume that you already have a sales data (sales_data.csv), the next goal is to analyze the data. First, we need to read the data:

import pandas as pd

data = pd.read_csv('sales_data.csv')
Copy after login

Then, we can clean and analyze the data. For example, we can calculate the sales of each product:

data['sales_amount'] = data['quantity'] * data['price']
Copy after login

Next, we can analyze which product has the highest sales:

max_sales = data.groupby('product_name')['sales_amount'].sum().idxmax()
print(f'最高销售额的产品是:{max_sales}')
Copy after login

Finally, we can export the results to a CSV file:

data.to_csv('sales_analysis.csv', index=False)
Copy after login

The above is the detailed content of How to use Pandas for data analysis in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1672
14
PHP Tutorial
1277
29
C# Tutorial
1257
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles