Home Technology peripherals AI How to use artificial intelligence strategies to ease student insecurities

How to use artificial intelligence strategies to ease student insecurities

May 11, 2023 pm 03:28 PM
AI Strategy

People are beginning to feel uneasy about whether college students are learning and developing well, but there are few clear numbers to identify "important differences". Numeric situations usually refer to situations where there is a "right" or "wrong" answer (similar to the on/off button on a laptop). If the data are not interpreted correctly, some conventional statistical procedures may support the idea that a "difference" may be found in an analysis comparing the scores of two groups of students (e.g., yes/no p ≤ .05?). However, no single finding can be convincing because student learning and development is a complex process that goes far beyond the sophistication of numerical analysis.

The purpose of data analysis is to identify patterns and anomalies in student learning and development. Student learning and development is a gradual process that requires the comprehensive consideration of multiple factors. As a result, universities and higher education institutions are adopting artificial intelligence and “simulation” strategies to analyze data to gain a more comprehensive perspective. These simulation tools can create virtually unlimited options, between nothing and everything in between, to help institutions better understand student learning and development.

Even considering whether different student subgroups have more similar rather than different scores is a simulated situation because we realize there is no one right answer that applies to all students on campus. In order to explain why students' learning and development are so complex, we need to expand our perspective and understand the influence of all relevant factors, including but not limited to aspects of students' background, culture, education and family life.

Therefore, we need a deeper understanding of students' learning and development processes, rather than just relying on the results of conventional statistical procedures. By employing artificial intelligence and simulation tools to analyze data, we can gain a more complete and comprehensive view of student learning and development.

Developmental science, including developmental psychology, cognitive science and neuroscience, does not only focus on the "age and stage" development of children, but focuses more on exploring the "trajectory" of students. Changes in these trajectories are determined by many factors, not just those predicted by immutable demographic characteristics and past academic performance. Development trajectory is a student's life path influenced by the past, present and future, which determines the student's future development direction. Therefore, understanding changes and factors in student trajectories is critical to developing individualized education and development plans.

We examined fifteen longitudinal datasets that combined different computer information systems and performance-based assessments to collect data on student learning and development. These datasets date from 2007 and each longitudinal dataset contains more than 1.9 million individual data points. By using machine learning techniques and AI cognitive analytics, we built predictive models to identify patterns and anomalies in the data collected about student success in these longitudinal cohort studies. We also used SPSS statistical software for linear and binary logistic regression analyses, and AMOS for structural equation modeling. By using different analytical methods, we confirmed the findings and arrived at the same findings, increasing confidence in the findings.

In our research, we found that changes in student trajectories can be seen as a conscious deviation, and students can make changes in their expected life paths through self-adjustment. For example, a student may be placed on a trajectory leading to college success but decide to reorient themselves toward a different trajectory that leads to dropout. Our research also shows that changes in students' trajectories are determined by multiple factors, such as students' personality, family environment, education level, psychological state, etc. Therefore, developing personalized education and development plans needs to comprehensively consider these factors to help students find the trajectory that best suits them and realize their greatest potential.

Similar results were obtained using techniques such as machine learning, AI cognitive analysis, and traditional statistics. In a 2017 paper, "Using Support Vector Machines to Predict Student Graduation Outcomes," it was introduced how to apply machine learning technology to predict student graduation. The paper leveraged more than 100 features to build a predictive model, including a set of factors to measure student learning and development. The research results confirm the conclusion of AI cognitive analysis: students' admission background does not determine their future, but their learning and development experiences after admission are more important in predicting academic achievement and graduation. Applying AI strategies provides the most useful information. Student trajectories are complex, but AI can handle this complexity.

Collecting data on student learning and development helps advance “simulation” thinking because developmental science considers all of a student’s experiences on campus and over time within the same framework. AI strategies are useful when analyzing all the “fragmented” data on student learning and development.

The above is the detailed content of How to use artificial intelligence strategies to ease student insecurities. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1666
14
PHP Tutorial
1273
29
C# Tutorial
1254
24
Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

See all articles