Home Backend Development Golang golang big endian conversion

golang big endian conversion

May 10, 2023 pm 05:27 PM

Golang is an advanced programming language that is widely used in modern web applications, cloud computing, container technology and microservices. In the field of data processing, it is often necessary to convert data into big and small ends. This article will introduce you to Golang's big and small endian conversion methods.

  1. What is big and small endian

In a computer, each data type has its representation in memory, the most important of which is byte order, usually Called big or small endian. "Big endian" means that the highest byte is stored first, and "little endian" means that the lowest byte is stored first. For example, if a 16-bit number is 0x1234, it occupies two bytes of memory in big-endian mode. The first byte is 0x12 and the second byte is 0x34. In little-endian mode, The first byte is 0x34 and the second byte is 0x12.

  1. Big-endian conversion in Golang

In Golang, you can perform big-endian conversion operations through the Binary package in the standard library. The Binary package provides functions for converting between basic types and byte arrays, including functions for converting big-endian and little-endian byte order.

Among them, this article focuses on the following functions:

  • func LittleEndian.Uint16(b []byte) uint16

Convert the little-endian sequence b Convert to an integer of type uint16.

  • func LittleEndian.Uint32(b []byte) uint32

Convert the little-endian sequence b to an integer of type uint32.

  • func LittleEndian.Uint64(b []byte) uint64

Convert the little-endian sequence b to an integer of uint64 type.

  • func LittleEndian.PutUint16(b []byte, v uint16)

Write the uint16 type integer v into the little-endian sequence b.

  • func LittleEndian.PutUint32(b []byte, v uint32)

Write the uint32 type integer v into the little-endian sequence b.

  • func LittleEndian.PutUint64(b []byte, v uint64)

Write the uint64 type integer v into the little-endian sequence b.

For the conversion of big-endian sequences, the Binary package also provides corresponding functions. Just replace the function name prefix from BigEndian to LittleEndian.

  1. Little endian conversion example

Below, we give an example of little endian conversion, taking uint16 as an example.

package main

import (

"encoding/binary"
"fmt"
Copy after login

)

func main() {

src := []byte{0x34, 0x12}
val := binary.LittleEndian.Uint16(src)
fmt.Println(val)

dest := make([]byte, 2)
binary.LittleEndian.PutUint16(dest, val)
fmt.Printf("%x", dest)
Copy after login

}

at In this example, we define a byte array src with a length of 2, which contains a uint16 type value. We use binary.LittleEndian.Uint16(src) to convert it into a little-endian sequence and print it out. Then we write the value to the new byte array dest through binary.LittleEndian.PutUint16(dest, val), and use the Printf function to output its hexadecimal representation. Run the program and the output result is as follows:

4660

1234

It can be seen that the uint16 type value 0x1234 is represented as 0x3412 in the little-endian sequence, and is converted back It can be restored to the original value later.

  1. Summary

By using the functions of the Binary package, we can easily perform big-endian conversion operations in Golang. In practical applications, endian conversion is a very common data conversion method and is widely used in computer networks, storage systems, image processing and other fields. Therefore, mastering Golang's big and small endian conversion operations will be of great help to developers in data processing.

The above is the detailed content of golang big endian conversion. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1665
14
PHP Tutorial
1270
29
C# Tutorial
1250
24
Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Getting Started with Go: A Beginner's Guide Getting Started with Go: A Beginner's Guide Apr 26, 2025 am 12:21 AM

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

See all articles