Home Backend Development Golang Golang object to json

Golang object to json

May 10, 2023 am 09:00 AM

Converting an object to json in golang is a very common thing, I believe most golang developers will encounter it. This article will share the methods and techniques on how to convert an object into json in golang.

  1. Using the encoding/json package

First look at the encoding/json package provided in the golang standard library. This package provides very simple and easy-to-use functions and types that allow us to easily convert an object into a json-formatted string or convert a json-formatted string into an object.

It should be noted that the object must be exportable (that is, the first letter is capitalized), otherwise the json package cannot access its fields.

The following is a simple example code that uses the encoding/json package to convert the Student object into a json format string:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string
    Age   int
    Score float64
}

func main() {
    s := Student{
        Name:  "Tom",
        Age:   18,
        Score: 90.5,
    }
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))
}
Copy after login

Output:

{"Name":"Tom","Age":18,"Score":90.5}
Copy after login

As you can see, the json package provides The Marshal function can serialize a structure object into a json format string.

For a complex object, we can also easily serialize it into a json format string. For example, the following array consists of multiple Student objects:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string
    Age   int
    Score float64
}

func main() {
    students := []Student{
        {Name: "Tom", Age: 18, Score: 90.5},
        {Name: "Jerry", Age: 19, Score: 96.5},
        {Name: "Alice", Age: 17, Score: 85.5},
    }
    b, err := json.Marshal(students)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))
}
Copy after login

Output:

[{"Name":"Tom","Age":18,"Score":90.5},{"Name":"Jerry","Age":19,"Score":96.5},{"Name":"Alice","Age":17,"Score":85.5}]
Copy after login

Similarly, we can use the Unmarshal function provided by the json package to parse a json format string into a object. For example:

package main

import (
    "encoding/json"
    "fmt"
)

type Point struct {
    X int `json:"x"`
    Y int `json:"y"`
}

type Line struct {
    Start Point `json:"start"`
    End   Point `json:"end"`
}

func main() {
    jsonStr := `
    {
        "start": {
            "x": 1,
            "y": 2
        },
        "end": {
            "x": 3,
            "y": 4
        }
    }`
    var line Line
    err := json.Unmarshal([]byte(jsonStr), &line)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", line)
}
Copy after login

Output:

main.Line{Start:main.Point{X:1, Y:2}, End:main.Point{X:3, Y:4}}
Copy after login

In this sample code, we define a Line object, which contains two Point objects. Use the Unmarshal function provided by the json package to parse a json format string into a Line object and then output it.

  1. Customize json serialization and deserialization through structure tag

If we want to customize the output in json format, such as modifying the name of a field ,what can we do about it? At this time, the struct tag in golang comes in handy.

In golang, struct tag is a way to annotate struct fields, which can be achieved by adding a string after the field type. When using json package serialization and deserialization, we can use struct tag to control the serialization and deserialization process.

The following is a simple sample code that demonstrates how to use struct tag to control the process of json serialization and deserialization:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string `json:"name"`
    Age   int    `json:"age"`
    Score float64
}

func main() {
    s := Student{
        Name:  "Tom",
        Age:   18,
        Score: 90.5,
    }
    fmt.Println("*** 序列化 ***")
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18,"Score":90.5}`
    var student Student
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}
Copy after login

Output:

*** 序列化 ***
{"name":"Tom","age":18,"Score":90.5}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:90.5}
Copy after login

Here, we will The Name field in the Student object is marked as "name", so that when serialized using the json.Marshal function, its name will be changed to "name". Similarly, when deserializing using the json.Unmarshal function, "name" will be automatically recognized as the Name field.

Through the form of struct tag, we can also control the visibility of fields in the json output. For example:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string `json:"name,omitempty"`
    Age   int    `json:"age"`
    Score float64
}

func main() {
    s := Student{
        Age:   18,
        Score: 90.5,
    }
    fmt.Println("*** 序列化 ***")
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18,"Score":90.5}`
    var student Student
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}
Copy after login

Output:

*** 序列化 ***
{"age":18,"Score":90.5}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:90.5}
Copy after login

Here we mark the Name field as "omitempty", which means that if the value of the Name field is zero (i.e. ""), then when json is output Just ignore this field.

  1. Using third-party libraries

When we need to perform more complex json serialization and deserialization, the golang standard library may be a little weak. At this time, we can use some third-party libraries to help us achieve more flexible operations.

The following is a sample code that uses a third-party library for json serialization and deserialization. This sample code uses the json-iterator/go package, which is currently one of the fastest golang json libraries.

package main

import (
    "fmt"
    "github.com/json-iterator/go"
)

type Student struct {
    Name  string `json:"name"`
    Age   int    `json:"age"`
    Score float64 `json:"score,omitempty"`
}

func main() {
    student := Student{
        Name:  "Tom",
        Age:   18,
        Score: 0,
    }
    fmt.Println("*** 序列化 ***")
    json := jsoniter.ConfigCompatibleWithStandardLibrary
    b, err := json.Marshal(student)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18}`
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}
Copy after login

Output:

*** 序列化 ***
{"name":"Tom","age":18}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:0}
Copy after login

It should be noted that although using third-party libraries can achieve more flexible json operations, it may also introduce problems such as reduced performance or increased code complexity. The choice needs to be made based on specific scenarios.

This article introduces several methods and techniques for converting objects into json in golang. I hope this article can be helpful to readers.

The above is the detailed content of Golang object to json. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1261
29
C# Tutorial
1234
24
Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

See all articles