Table of Contents
Asynchronous tasks and scheduled tasks
Use Celery to achieve asynchronousization
Use multi-threading to achieve asynchronousization
Home Backend Development Python Tutorial How to use Python's asynchronous and scheduled tasks to improve program concurrency and execution efficiency?

How to use Python's asynchronous and scheduled tasks to improve program concurrency and execution efficiency?

May 09, 2023 pm 05:25 PM
python

Asynchronous tasks and scheduled tasks

For some operations in web applications, they may take a long time to complete, or their execution time cannot be determined. For these operations, if the user only needs to know that the server has received the request and does not need to get the execution result of the request immediately, then we can process them asynchronously. If the use of cache is the first priority for optimizing website performance, then asynchronousizing tasks that take time or whose execution time is uncertain is the second priority for optimizing website performance. Simply put, anything that can be postponed should not be done immediately.

In the previous chapter, we took sending text messages and uploading files to cloud storage as examples. Among these two operations, the former is an operation with uncertain time (because as the caller, we cannot determine the response time of the third-party platform), and the latter is a time-consuming operation (if the file is large or the third-party platform is unstable, it may cause It takes a long time to upload). Obviously, both operations can be asynchronous.

In Python projects, we can use multi-threading or use the third-party library Celery to achieve asynchronous processing.

Use Celery to achieve asynchronousization

Celery is a Python asynchronous task queue/message queue, which can easily complete the processing of asynchronous tasks. Using Celery, tasks can be distributed to multiple task executors, which can be a single process or multiple processes or multiple hosts. Celery also supports task priority, task result saving, task retry and other functions.

Using Celery to implement asynchronousization requires the following steps:

Install Celery

pip install celery

Create a Celery in the project Application

from celery import Celery
app = Celery('tasks', broker='pyamqp://guest@localhost//')
Copy after login

Define tasks

@app.task
def add(x, y):
    return x + y
Copy after login

Call tasks in the project

result = add.delay(4, 4)
print(result.get(timeout=1))
Copy after login

Use multi-threading to achieve asynchronousization

threading## in Python # Modules can be used to create multi-threads. Using multi-threading, time-consuming tasks can be executed in new threads without affecting the execution of the main thread.

Using multi-threading to implement asynchronousization requires the following steps:

Import

threading module

import threading

Define a function as a task

def task():
    print('Hello from task')
Copy after login

Create a new thread and start it

t = threading.Thread(target=task)
t.start()
Copy after login

Timing task

Some tasks need to be executed at a specific time, then we need to use timing Task. There are multiple third-party libraries in Python that can be used to implement scheduled tasks, such as

schedule, APScheduler, etc. Let's take APScheduler as an example to explain how to implement scheduled tasks.

Using

APScheduler requires the following steps to implement scheduled tasks:

Installation

APScheduler

pip install apscheduler

Import

APScheduler Module

from apscheduler.schedulers.blocking import BlockingScheduler
Copy after login

Create a

BlockingScheduler instance and add tasks

def task():
    print('Hello from task')
scheduler = BlockingScheduler()
scheduler.add_job(task, 'interval', seconds=5)
scheduler.start()
Copy after login
The above code will be executed every 5 seconds A

task function.

Comparison between Celery and multi-threading

Although both Celery and multi-threading can implement asynchronous processing, there are some differences, advantages and disadvantages between them.

Advantages and disadvantages of Celery

Advantages:

  • Can distribute tasks to multiple task executors, thereby achieving task load balancing and improving Efficiency of task processing.

  • Supports functions such as task priority, task result saving, and task retry.

  • Supports multiple message transmission protocols, such as AMQP, Redis, RabbitMQ, etc.

  • Can be easily integrated into web frameworks such as Django and Flask.

Disadvantages:

  • The installation and configuration process may be cumbersome.

  • May increase system complexity.

Advantages and disadvantages of multi-threading

Advantages:

  • It is relatively simple to implement and does not require the installation of additional libraries.

  • Can quickly complete task processing on the local machine.

Disadvantages:

  • Tasks cannot be distributed to multiple task executors, so task load balancing cannot be achieved.

  • Functions such as task priority, task result saving, and task retry cannot be easily implemented.

  • may cause system performance degradation because multi-threading has limited concurrency performance.

Selection of scheduled tasks

In Python, there are multiple third-party libraries that can be used to implement scheduled tasks, such as

schedule, APScheduler etc. These libraries have their own advantages and disadvantages, and we can choose the appropriate library to implement scheduled tasks according to specific needs.

schedule library

  • is simple and easy to use. You only need to call the

    schedule function to implement scheduled tasks.

  • Cannot achieve load balancing of tasks and concurrent execution of tasks.

APScheduler library

  • Supports multiple schedulers, such as BlockingScheduler, BackgroundScheduler, AsyncIOScheduler, etc.

  • Supports multiple triggers, such as date, interval, cron, interval_from_last, etc.

  • Supports concurrent execution of tasks and load balancing.

  • Can be easily integrated into web frameworks such as Django and Flask.

The above is the detailed content of How to use Python's asynchronous and scheduled tasks to improve program concurrency and execution efficiency?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1668
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles