MySQL 慢查询日志分析及可视化结果_MySQL
MySQL 慢查询日志分析
1. pt-query-digest分析慢查询日志
pt-query-digest --report slow.log
2. 报告最近半个小时的慢查询:
pt-query-digest --report --since 1800s slow.log
3. 报告一个时间段的慢查询:
pt-query-digest --report --since '2013-02-10 21:48:59' --until '2013-02-16 02:33:50' slow.log
4. 报告只含select语句的慢查询:
pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log
5. 报告针对某个用户的慢查询:
pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log
6. 报告所有的全表扫描或full join的慢查询:
pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") || (($event->{Full_join} || "") eq "yes")' slow.log
更多filter的 事件属性
将慢查询日志的分析结果可视化
使用pt-query-digest分析慢查询日志并将查询分析数据保存到MySQL数据库表中.然后使用 Query-Digest-UI 来展示分析结果.
由于Query-Digest-UI是基于PHP的Web应用程序,因此需要LAMP环境的支持.
查询分析结果可视化步骤如下: 1)创建相关数据库表
-- install.sql-- Create the database needed for the Query-Digest-UIDROP DATABASE IF EXISTS slow_query_log;CREATE DATABASE slow_query_log;USE slow_query_log;-- Create the global query review tableCREATE TABLE `global_query_review` (`checksum` bigint(20) unsigned NOT NULL,`fingerprint` text NOT NULL,`sample` longtext NOT NULL,`first_seen` datetime DEFAULT NULL,`last_seen` datetime DEFAULT NULL,`reviewed_by` varchar(20) DEFAULT NULL,`reviewed_on` datetime DEFAULT NULL,`comments` text,`reviewed_status` varchar(24) DEFAULT NULL,PRIMARY KEY (`checksum`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;-- Create the historical query review tableCREATE TABLE `global_query_review_history` (`hostname_max` varchar(64) NOT NULL,`db_max` varchar(64) DEFAULT NULL,`checksum` bigint(20) unsigned NOT NULL,`sample` longtext NOT NULL,`ts_min` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',`ts_max` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',`ts_cnt` float DEFAULT NULL,`Query_time_sum` float DEFAULT NULL,`Query_time_min` float DEFAULT NULL,`Query_time_max` float DEFAULT NULL,`Query_time_pct_95` float DEFAULT NULL,`Query_time_stddev` float DEFAULT NULL,`Query_time_median` float DEFAULT NULL,`Lock_time_sum` float DEFAULT NULL,`Lock_time_min` float DEFAULT NULL,`Lock_time_max` float DEFAULT NULL,`Lock_time_pct_95` float DEFAULT NULL,`Lock_time_stddev` float DEFAULT NULL,`Lock_time_median` float DEFAULT NULL,`Rows_sent_sum` float DEFAULT NULL,`Rows_sent_min` float DEFAULT NULL,`Rows_sent_max` float DEFAULT NULL,`Rows_sent_pct_95` float DEFAULT NULL,`Rows_sent_stddev` float DEFAULT NULL,`Rows_sent_median` float DEFAULT NULL,`Rows_examined_sum` float DEFAULT NULL,`Rows_examined_min` float DEFAULT NULL,`Rows_examined_max` float DEFAULT NULL,`Rows_examined_pct_95` float DEFAULT NULL,`Rows_examined_stddev` float DEFAULT NULL,`Rows_examined_median` float DEFAULT NULL,`Rows_affected_sum` float DEFAULT NULL,`Rows_affected_min` float DEFAULT NULL,`Rows_affected_max` float DEFAULT NULL,`Rows_affected_pct_95` float DEFAULT NULL,`Rows_affected_stddev` float DEFAULT NULL,`Rows_affected_median` float DEFAULT NULL,`Rows_read_sum` float DEFAULT NULL,`Rows_read_min` float DEFAULT NULL,`Rows_read_max` float DEFAULT NULL,`Rows_read_pct_95` float DEFAULT NULL,`Rows_read_stddev` float DEFAULT NULL,`Rows_read_median` float DEFAULT NULL,`Merge_passes_sum` float DEFAULT NULL,`Merge_passes_min` float DEFAULT NULL,`Merge_passes_max` float DEFAULT NULL,`Merge_passes_pct_95` float DEFAULT NULL,`Merge_passes_stddev` float DEFAULT NULL,`Merge_passes_median` float DEFAULT NULL,`InnoDB_IO_r_ops_min` float DEFAULT NULL,`InnoDB_IO_r_ops_max` float DEFAULT NULL,`InnoDB_IO_r_ops_pct_95` float DEFAULT NULL,`InnoDB_IO_r_bytes_pct_95` float DEFAULT NULL,`InnoDB_IO_r_bytes_stddev` float DEFAULT NULL,`InnoDB_IO_r_bytes_median` float DEFAULT NULL,`InnoDB_IO_r_wait_min` float DEFAULT NULL,`InnoDB_IO_r_wait_max` float DEFAULT NULL,`InnoDB_IO_r_wait_pct_95` float DEFAULT NULL,`InnoDB_IO_r_ops_stddev` float DEFAULT NULL,`InnoDB_IO_r_ops_median` float DEFAULT NULL,`InnoDB_IO_r_bytes_min` float DEFAULT NULL,`InnoDB_IO_r_bytes_max` float DEFAULT NULL,`InnoDB_IO_r_wait_stddev` float DEFAULT NULL,`InnoDB_IO_r_wait_median` float DEFAULT NULL,`InnoDB_rec_lock_wait_min` float DEFAULT NULL,`InnoDB_rec_lock_wait_max` float DEFAULT NULL,`InnoDB_rec_lock_wait_pct_95` float DEFAULT NULL,`InnoDB_rec_lock_wait_stddev` float DEFAULT NULL,`InnoDB_rec_lock_wait_median` float DEFAULT NULL,`InnoDB_queue_wait_min` float DEFAULT NULL,`InnoDB_queue_wait_max` float DEFAULT NULL,`InnoDB_queue_wait_pct_95` float DEFAULT NULL,`InnoDB_queue_wait_stddev` float DEFAULT NULL,`InnoDB_queue_wait_median` float DEFAULT NULL,`InnoDB_pages_distinct_min` float DEFAULT NULL,`InnoDB_pages_distinct_max` float DEFAULT NULL,`InnoDB_pages_distinct_pct_95` float DEFAULT NULL,`InnoDB_pages_distinct_stddev` float DEFAULT NULL,`InnoDB_pages_distinct_median` float DEFAULT NULL,`QC_Hit_cnt` float DEFAULT NULL,`QC_Hit_sum` float DEFAULT NULL,`Full_scan_cnt` float DEFAULT NULL,`Full_scan_sum` float DEFAULT NULL,`Full_join_cnt` float DEFAULT NULL,`Full_join_sum` float DEFAULT NULL,`Tmp_table_cnt` float DEFAULT NULL,`Tmp_table_sum` float DEFAULT NULL,`Filesort_cnt` float DEFAULT NULL,`Filesort_sum` float DEFAULT NULL,`Tmp_table_on_disk_cnt` float DEFAULT NULL,`Tmp_table_on_disk_sum` float DEFAULT NULL,`Filesort_on_disk_cnt` float DEFAULT NULL,`Filesort_on_disk_sum` float DEFAULT NULL,`Bytes_sum` float DEFAULT NULL,`Bytes_min` float DEFAULT NULL,`Bytes_max` float DEFAULT NULL,`Bytes_pct_95` float DEFAULT NULL,`Bytes_stddev` float DEFAULT NULL,`Bytes_median` float DEFAULT NULL,UNIQUE KEY `hostname_max` (`hostname_max`,`checksum`,`ts_min`,`ts_max`),KEY `ts_min` (`ts_min`),KEY `checksum` (`checksum`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;
2) 创建数据库账号
$ mysql -uroot -p -h 192.168.1.190 <p>3) 配置Query-Digest-UI</p><pre class="brush:php;toolbar:false">git clone https://github.com/kormoc/Query-Digest-UI.gitcd Query-Digest-UIcp config.php.example config.phpvi config.php$reviewhost = array(// Replace hostname and database in this setting// use host=hostname;port=portnum if not the default port 'dsn' => 'mysql:host=192.168.1.190;port=3306;dbname=slow_query_log', 'user' => 'slowlog', 'password' => '123456',// See http://www.percona.com/doc/percona-toolkit/2.1/pt-query-digest.html#cmdoption-pt-query-digest--review 'review_table'=> 'global_query_review',// This table is optional. You don't need it, but you lose detailed stats// Set to a blank string to disable// See http://www.percona.com/doc/percona-toolkit/2.1/pt-query-digest.html#cmdoption-pt-query-digest--review-history 'history_table' => 'global_query_review_history',);
4)使用pt-query-digest分析日志并将分析结果导入数据库
pt-query-digest --user=slowlog --password=123456 --review h=192.168.1.190,D=slow_query_log,t=global_query_review --review-history h=192.168.1.190,D=slow_query_log,t=global_query_review_history --no-report --limit=0% --filter=" /$event->{Bytes} = length(/$event->{arg}) and /$event->{hostname}=/"$HOSTNAME/"" /usr/local/mysql/data/slow.log
5)访问web界面查看可视化结果
转自:http://www.zrwm.com/?p=2668
文章标题: 本文地址: 除非注明,博客文章均为"运维生存时间"原创,转载请标明本文地址Q群:39514058

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.
