Java Handler synchronization barrier example code analysis
1. In the loading and drawing process of View, there is a choreographer class, mChoreographer.
mTraversalBarrier = mHandler.getLooper().postSyncBarrier();
Insert a synchronization barrier message into the MessageQueue, msg.target==null message, the return value mTraversalBarrier is an int token value.
void scheduleTraversals() { if (!mTraversalScheduled) { mTraversalScheduled = true; //向消息队列插入一个同步屏障的消息。msg.target==null的消息 mTraversalBarrier = mHandler.getLooper().postSyncBarrier(); mChoreographer.postCallback( Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null); } }
The mChoreographer.postCallback() method will execute the code in mTraversalRunnable.
mHandler.getLooper().removeSyncBarrier(mTraversalBarrier);
This will remove the synchronization barrier message in the MessageQueue based on the token value generated above.
final TraversalRunnable mTraversalRunnable = new TraversalRunnable(); final class TraversalRunnable implements Runnable { @Override public void run() { doTraversal(); } } void doTraversal() { if (mTraversalScheduled) { mTraversalScheduled = false; //移除同步屏障消息 mHandler.getLooper().removeSyncBarrier(mTraversalBarrier); //在这个方法中会调用 measure layout draw,view的绘制绘制流程的方法 performTraversals(); } }
Let’s look at this line of code mHandler.getLooper().postSyncBarrier() to see how the system handles it.
Obtained a Message without a handler set.
int enqueueSyncBarrier(long when) { // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized (this) { final int token = mNextBarrierToken++; // 这个msg.target没有被赋值 final Message msg = Message.obtain(); msg.markInUse(); msg.when = when; msg.arg1 = token; Message prev = null; Message p = mMessages; if (when != 0) { while (p != null && p.when <= when) { prev = p; p = p.next; } } if (prev != null) { // invariant: p == prev.next msg.next = p; prev.next = msg; } else { msg.next = p; mMessages = msg; } return token; } }
Normally we send messages through the handler, and the handler is not allowed to be empty.
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } ........... }
Why does the system send a message with an empty handler?
Let’s first look at what mChoreographer did after sending the synchronization barrier message?
Another asynchronous message was sent: msg.setAsynchronous(true). The handler of this message is not null.
private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) { synchronized (mLock) { final long now = SystemClock.uptimeMillis(); final long dueTime = now + delayMillis; mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); if (dueTime <= now) { scheduleFrameLocked(now); } else { Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); msg.arg1 = callbackType; //将消息设置为异步消息 msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, dueTime); } } }
Next, let’s take a look at how MessageQueue removes messages and how to process this synchronization barrier message.
Message next() { synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; //如果msg.target==null说明我们已经向消息队里中插入了一条屏障消息。 //此时会进入到这个循环中,找到msg.isAsynchronous==true的异步消息。 //通常我们发送的都是同步消息isAsynchronous = false的,并且msg.target不能为null的。 if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous());//msg.isAsynchronous==true时结束循环,说明找到了这个异步消息。 } if (msg != null) {//找到了同步屏障的异步消息后,直接返回 if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (false) Log.v("MessageQueue", "Returning message: " + msg); return msg; } } else {//没有找到的话则进入休眠直到下一次被唤醒 // No more messages. nextPollTimeoutMillis = -1; } } }
When canceling, first determine whether msg.target is null, and then go through the while loop to find the message that msg.isAsynchronous() == true. That is the asynchronous message sent above. Usually the messages we send are synchronous messages, and msg.setAsynchronous(true); will not be set.
The purpose of the system is to process this asynchronous message first. All synchronization messages will be placed at the back, just like a barrier, so such an operation is called a synchronization barrier, and the processing of synchronization barrier messages has a higher priority.
Because the choreographer class mChoreographer is responsible for screen rendering, it needs to process signals from the bottom layer in a timely manner to ensure the frequency of interface refresh.
The above is the detailed content of Java Handler synchronization barrier example code analysis. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.
