Home Technology peripherals AI U.S. Department of Justice: Google's monopoly has delayed the birth of innovative technologies such as ChatGPT

U.S. Department of Justice: Google's monopoly has delayed the birth of innovative technologies such as ChatGPT

Apr 30, 2023 pm 06:07 PM
AI openai

U.S. Department of Justice: Googles monopoly has delayed the birth of innovative technologies such as ChatGPT

News on April 14, local time on Thursday, the U.S. Department of Justice stated in the court debate in the monopoly case against Google that if Google did not monopolize the search market, ChatGPT and other technological innovations would It might have been a few years ago.

Kenneth Dintzer, the lead attorney for the U.S. Department of Justice’s antitrust cases, said that just days after Microsoft announced that it would incorporate artificial intelligence research company OpenAI’s chat technology into its Bing search engine, Google It also said it would release its own conversational artificial intelligence products.

Dingze told judge Amit Mehta: "This shows what real competition will bring. Google has maintained its monopoly in search for the past 12 years. . Would we have seen ChatGPT six years ago? Would we have seen five other competitors competing in search? These are questions we can’t answer.”

Google asks Judge Mehta to dismiss Trials are scheduled for September in two antitrust cases brought jointly by the U.S. Department of Justice and multiple state attorneys general. The U.S. Department of Justice and multiple states filed separate lawsuits in 2020, accusing Google of violating antitrust laws by ensuring that its search engine was preinstalled on web browsers and mobile devices. Mehta is overseeing both lawsuits.

Google lawyer John Schmidtlein acknowledged that agreements with Apple and other smartphone makers gave Google an "advantage" but did not violate antitrust laws. Under these agreements, Google Search becomes the default search engine on these phones. "It definitely brings an advantage, but it's not insurmountable," he said.

Schmidlein's comments were in response to Judge Mehta's question about whether Google's default search engine agreement gives it It brings advantages that competitors cannot match. Judge Mehta said: "These agreements have a self-reinforcing nature. The only unique thing, in my view, is that the product gets better as long as there are default settings. Google collects more data with these types of agreements , and also has the ability to provide more accurate and efficient search results."

According to Schmidlein, Google first signed a contract with Apple in 2003 to become the default search engine for its Safari browser. At the time, Google was one of many search engines, and Apple's Mac computers had a fairly small market share. Exactly how much Google pays Apple remains a secret, but it's likely no less than a few billion dollars a year.

Mehta also pressed Google on why it is still paying for default status today when it is the undisputed leader in search. Schmidlein explained: "They spend money to promote their product so that people can use it. As for whether people will switch to Google's search service, it depends entirely on the user."

However, U.S. Department of Justice lawyer Ding Ze said that Google’s insistence on signing exclusive agreements and paying huge fees is the key. He said: "Google pays billions of dollars to get and maintain the default status of its search engine. Google keeps saying: 'It's because people need us.' But if people really want to use it, they don't have to spend every year Billions of dollars." Judge Mehta also rejected some of the Justice Department's arguments and asked the agency to specify what different corrective actions Google should have taken. Dingze said that after gaining dominance, Google should have eliminated exclusivity clauses in its contracts. He said that would allow potential competitors to bid for access points on smartphones and browsers, and also allow companies like Apple or Firefox developer Mozilla to design their products differently to give consumers more choice.

Judge Mehta is expected to rule this summer.

The above is the detailed content of U.S. Department of Justice: Google's monopoly has delayed the birth of innovative technologies such as ChatGPT. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1659
14
PHP Tutorial
1258
29
C# Tutorial
1232
24
Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Posthumous work of the OpenAI Super Alignment Team: Two large models play a game, and the output becomes more understandable Posthumous work of the OpenAI Super Alignment Team: Two large models play a game, and the output becomes more understandable Jul 19, 2024 am 01:29 AM

If the answer given by the AI ​​model is incomprehensible at all, would you dare to use it? As machine learning systems are used in more important areas, it becomes increasingly important to demonstrate why we can trust their output, and when not to trust them. One possible way to gain trust in the output of a complex system is to require the system to produce an interpretation of its output that is readable to a human or another trusted system, that is, fully understandable to the point that any possible errors can be found. For example, to build trust in the judicial system, we require courts to provide clear and readable written opinions that explain and support their decisions. For large language models, we can also adopt a similar approach. However, when taking this approach, ensure that the language model generates

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

A new era of VSCode front-end development: 12 highly recommended AI code assistants A new era of VSCode front-end development: 12 highly recommended AI code assistants Jun 11, 2024 pm 07:47 PM

In the world of front-end development, VSCode has become the tool of choice for countless developers with its powerful functions and rich plug-in ecosystem. In recent years, with the rapid development of artificial intelligence technology, AI code assistants on VSCode have sprung up, greatly improving developers' coding efficiency. AI code assistants on VSCode have sprung up like mushrooms after a rain, greatly improving developers' coding efficiency. It uses artificial intelligence technology to intelligently analyze code and provide precise code completion, automatic error correction, grammar checking and other functions, which greatly reduces developers' errors and tedious manual work during the coding process. Today, I will recommend 12 VSCode front-end development AI code assistants to help you in your programming journey.

See all articles