Image Recognition: Convolutional Neural Network
This article is reprinted from the WeChat public account "Living in the Information Age". The author lives in the information age. To reprint this article, please contact the Living in the Information Age public account.
Convolutional Neural Network (CNN) is a special deep feed-forward network, which generally includes a data input layer, a convolution layer, an activation layer, and a downsampling layer. and fully connected layers.
The convolutional layer is an important unit in the convolutional neural network. It consists of a series of filtering data The essence of the convolution kernel is the linear superposition process of the weighted sum of the local area of the image and the weight of the convolution kernel. Image I is used as input, and a two-dimensional convolution kernel K is used for convolution. The convolution process can be expressed as:
Among them, I(i,j) is the value of the image at the position (i,j), and S(i,j) is the feature map obtained after the convolution operation.
The activation convolution operation is linear, can only perform linear mapping, and has limited expression ability. Therefore, to deal with nonlinear mapping problems, it is necessary to introduce a nonlinear activation function. To deal with different nonlinear problems, the activation functions introduced are also different. The commonly used ones are sigmoid, tanh, relu, etc.
The Sigmoid function expression is:
##The expression of Tanh function is:
Expression of Relu function The formula is:
The downsampling layer is also called the pooling layer, and is usually placed after several convolutional layers. to reduce the size of feature images. The pooling function uses the overall statistical characteristics of neighboring outputs at a certain position to replace the network's output at that position. Generally, the pooling layer has three functions: First, it reduces the feature dimension. The pooling operation is equivalent to another feature extraction process, which can remove redundant information and reduce the data processing volume of the next layer. The second is to prevent overfitting, and the pooling operation obtains more abstract information and improves generalization. The third is to maintain feature invariance, and the pooling operation retains the most important features.
The fully connected layer is usually placed at the end of the convolutional neural network, and all neurons between layers have weighted connections. The purpose is to map all the features learned in the network to the label space of the sample to make category judgments. The Softmax function is usually used in the last layer of the neural network as the output of the classifier. Each value output by the softmax function ranges between (0, 1).
There are some classic and efficient CNN models, such as: VGGNet, ResNet, AlexNet, etc., which have been widely used in the field of image recognition.
The above is the detailed content of Image Recognition: Convolutional Neural Network. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Graph neural networks (GNN) have made rapid and incredible progress in recent years. Graph neural network, also known as graph deep learning, graph representation learning (graph representation learning) or geometric deep learning, is the fastest growing research topic in the field of machine learning, especially deep learning. The title of this sharing is "Basics, Frontiers and Applications of GNN", which mainly introduces the general content of the comprehensive book "Basics, Frontiers and Applications of Graph Neural Networks" compiled by scholars Wu Lingfei, Cui Peng, Pei Jian and Zhao Liang. . 1. Introduction to graph neural networks 1. Why study graphs? Graphs are a universal language for describing and modeling complex systems. The graph itself is not complicated, it mainly consists of edges and nodes. We can use nodes to represent any object we want to model, and edges to represent two

Today's deep learning methods focus on designing the most suitable objective function so that the model's prediction results are closest to the actual situation. At the same time, a suitable architecture must be designed to obtain sufficient information for prediction. Existing methods ignore the fact that when the input data undergoes layer-by-layer feature extraction and spatial transformation, a large amount of information will be lost. This article will delve into important issues when transmitting data through deep networks, namely information bottlenecks and reversible functions. Based on this, the concept of programmable gradient information (PGI) is proposed to cope with the various changes required by deep networks to achieve multi-objectives. PGI can provide complete input information for the target task to calculate the objective function, thereby obtaining reliable gradient information to update network weights. In addition, a new lightweight network framework is designed

The current mainstream AI chips are mainly divided into three categories: GPU, FPGA, and ASIC. Both GPU and FPGA are relatively mature chip architectures in the early stage and are general-purpose chips. ASIC is a chip customized for specific AI scenarios. The industry has confirmed that CPUs are not suitable for AI computing, but they are also essential in AI applications. GPU Solution Architecture Comparison between GPU and CPU The CPU follows the von Neumann architecture, the core of which is the storage of programs/data and serial sequential execution. Therefore, the CPU architecture requires a large amount of space to place the storage unit (Cache) and the control unit (Control). In contrast, the computing unit (ALU) only occupies a small part, so the CPU is performing large-scale parallel computing.

In Minecraft, redstone is a very important item. It is a unique material in the game. Switches, redstone torches, and redstone blocks can provide electricity-like energy to wires or objects. Redstone circuits can be used to build structures for you to control or activate other machinery. They themselves can be designed to respond to manual activation by players, or they can repeatedly output signals or respond to changes caused by non-players, such as creature movement and items. Falling, plant growth, day and night, and more. Therefore, in my world, redstone can control extremely many types of machinery, ranging from simple machinery such as automatic doors, light switches and strobe power supplies, to huge elevators, automatic farms, small game platforms and even in-game machines. built computer. Recently, B station UP main @

Paper address: https://arxiv.org/abs/2307.09283 Code address: https://github.com/THU-MIG/RepViTRepViT performs well in the mobile ViT architecture and shows significant advantages. Next, we explore the contributions of this study. It is mentioned in the article that lightweight ViTs generally perform better than lightweight CNNs on visual tasks, mainly due to their multi-head self-attention module (MSHA) that allows the model to learn global representations. However, the architectural differences between lightweight ViTs and lightweight CNNs have not been fully studied. In this study, the authors integrated lightweight ViTs into the effective

Deep learning models for vision tasks (such as image classification) are usually trained end-to-end with data from a single visual domain (such as natural images or computer-generated images). Generally, an application that completes vision tasks for multiple domains needs to build multiple models for each separate domain and train them independently. Data is not shared between different domains. During inference, each model will handle a specific domain. input data. Even if they are oriented to different fields, some features of the early layers between these models are similar, so joint training of these models is more efficient. This reduces latency and power consumption, and reduces the memory cost of storing each model parameter. This approach is called multi-domain learning (MDL). In addition, MDL models can also outperform single

When the wind is strong enough to blow the umbrella, the drone is stable, just like this: Flying with the wind is a part of flying in the air. From a large level, when the pilot lands the aircraft, the wind speed may be Bringing challenges to them; on a smaller level, gusty winds can also affect drone flight. Currently, drones either fly under controlled conditions, without wind, or are operated by humans using remote controls. Drones are controlled by researchers to fly in formations in the open sky, but these flights are usually conducted under ideal conditions and environments. However, for drones to autonomously perform necessary but routine tasks, such as delivering packages, they must be able to adapt to wind conditions in real time. To make drones more maneuverable when flying in the wind, a team of engineers from Caltech

1 What is contrastive learning 1.1 Definition of contrastive learning 1.2 Principles of contrastive learning 1.3 Classic contrastive learning algorithm series 2 Application of contrastive learning 3 The practice of contrastive learning in Zhuanzhuan 3.1 The practice of CL in recommended recall 3.2 CL’s future planning in Zhuanzhuan 1 What is Contrastive Learning 1.1 Definition of Contrastive Learning Contrastive Learning (CL) is a popular research direction in the field of AI in recent years, attracting the attention of many research scholars. Its self-supervised learning method was even announced by Bengio at ICLR 2020. He and LeCun and other big guys named it as the future of AI, and then successively landed on NIPS, ACL,
