Example analysis of union-find in java
1. Overview
Union-find: a tree data structure used to solve some merging and query problems of disjoint sets. For example: there are n villages, query whether there is a connecting road between the two villages, connecting the two villages
Two cores:
Find: Find the set where the element is located
Merge (Union): Merge the sets of two elements into one set
2. Implementation
There are two common implementation ideas
Quick Find
Find time complexity: O(1)
Union time Complexity: O(n)
Quick Union
Time complexity of Find: O(logn) Can be optimized to O(a(n))a(n)
Time complexity of merge (Union): O(logn) can be optimized to O(a(n) )) a(n)
Use an array to implement a tree structure. The array subscript is the element, and the value stored in the array is the value of the parent node
Create abstract class Union Find
public abstract class UnionFind { int[] parents; /** * 初始化并查集 * @param capacity */ public UnionFind(int capacity){ if(capacity < 0) { throw new IllegalArgumentException("capacity must be >=0"); } //初始时每一个元素父节点(根结点)是自己 parents = new int[capacity]; for(int i = 0; i < parents.length;i++) { parents[i] = i; } } /** * 检查v1 v2 是否属于同一个集合 */ public boolean isSame(int v1,int v2) { return find(v1) == find(v2); } /** * 查找v所属的集合 (根节点) */ public abstract int find(int v); /** * 合并v1 v2 所属的集合 */ public abstract void union(int v1, int v2); // 范围检查 public void rangeCheck(int v) { if(v<0 || v > parents.length) throw new IllegalArgumentException("v is out of capacity"); } }
2.1 Quick Find implementation
Using Quick Find to implement union find, the maximum height of the tree is 2, and the height of each node is The parent node is the root node
public class UnionFind_QF extends UnionFind { public UnionFind_QF(int capacity) { super(capacity); } // 查 @Override public int find(int v) { rangeCheck(v); return parents[v]; } // 并 将v1所在集合并到v2所在集合上 @Override public void union(int v1, int v2) { // 查找v1 v2 的父(根)节点 int p1= find(v1); int p2 = find(v2); if(p1 == p2) return; //将所有以v1的根节点为根节点的元素全部并到v2所在集合上 即父节点改为v2的父节点 for(int i = 0; i< parents.length; i++) { if(parents[i] == p1) { parents[i] = p2; } } } }
2.2 Quick Union implementation
public class UnionFind_QU extends UnionFind { public UnionFind_QU(int capacity) { super(capacity); } //查某一个元素的根节点 @Override public int find(int v) { //检查下标是否越界 rangeCheck(v); // 一直循环查找节点的根节点 while (v != parents[v]) { v = parents[v]; } return v; } //V1 并到 v2 中 @Override public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; //将v1 根节点 的 父节点 修改为 v2的根结点 完成合并 parents[p1] = p2; } }
3. Optimization
Union lookup is often implemented by fast union, but fast union sometimes causes tree imbalance.
There are two optimization ideas: rank optimization and size optimization
3.1 Size-based optimization
Core idea: A tree with few elements is grafted to a tree with many elements
public class UniondFind_QU_S extends UnionFind{ // 创建sizes 数组记录 以元素(下标)为根结点的元素(节点)个数 private int[] sizes; public UniondFind_QU_S(int capacity) { super(capacity); sizes = new int[capacity]; //初始都为 1 for(int i = 0;i < sizes.length;i++) { sizes[i] = 1; } } @Override public int find(int v) { rangeCheck(v); while (v != parents[v]) { v = parents[v]; } return v; } @Override public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; //如果以p1为根结点的元素个数 小于 以p2为根结点的元素个数 p1并到p2上,并且更新p2为根结点的元素个数 if(sizes[p1] < sizes[p2]) { parents[p1] = p2; sizes[p2] += sizes[p1]; // 反之 则p2 并到 p1 上,更新p1为根结点的元素个数 }else { parents[p2] = p1; sizes[p1] += sizes[p2]; } } }
Size-based optimization may also lead to tree imbalance
3.2 Based on rank optimization
Core idea: grafting a short tree to a tall tree
public class UnionFind_QU_R extends UnionFind_QU { // 创建rank数组 ranks[i] 代表以i为根节点的树的高度 private int[] ranks; public UnionFind_QU_R(int capacity) { super(capacity); ranks = new int[capacity]; for(int i = 0;i < ranks.length;i++) { ranks[i] = 1; } } public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; // p1 并到 p2 上 p2为根 树的高度不变 if(ranks[p1] < ranks[p2]) { parents[p1] = p2; // p2 并到 p1 上 p1为根 树的高度不变 } else if(ranks[p1] > ranks[p2]) { parents[p2] = p1; }else { // 高度相同 p1 并到 p2上,p2为根 树的高度+1 parents[p1] = p2; ranks[p2] += 1; } } }
Based on rank optimization, as the number of Unions increases, the height of the tree will still get higher and higher, leading to find The operation slows down
There are three ideas to continue optimizing: path compression, path splitting, and path halving
3.2.1 Path Compression (Path Compression)
Use it when finding All nodes on the path point to the root node, thereby reducing the height of the tree
/** * Quick Union -基于rank的优化 -路径压缩 * */ public class UnionFind_QU_R_PC extends UnionFind_QU_R { public UnionFind_QU_R_PC(int capacity) { super(capacity); } @Override public int find(int v) { rangeCheck(v); if(parents[v] != v) { //递归 使得从当前v 到根节点 之间的 所有节点的 父节点都改为根节点 parents[v] = find(parents[v]); } return parents[v]; } }
Although the height of the tree can be reduced, the implementation cost is slightly higher
3.2 .2 Path Spliting
Make every node on the path point to its grandparent node
/** * Quick Union -基于rank的优化 -路径分裂 * */ public class UnionFind_QU_R_PS extends UnionFind_QU_R { public UnionFind_QU_R_PS(int capacity) { super(capacity); } @Override public int find(int v) { rangeCheck(v); while(v != parents[v]) { int p = parents[v]; parents[v] = parents[parents[v]]; v = p; } return v; } }
3.2.3 Path halved (Path Halving)
Make every other node on the path point to its grandparent node
/** * Quick Union -基于rank的优化 -路径减半 * */ public class UnionFind_QU_R_PH extends UnionFind_QU_R { public UnionFind_QU_R_PH(int capacity) { super(capacity); } public int find(int v) { rangeCheck(v); while(v != parents[v]) { parents[v] = parents[parents[v]]; v = parents[v]; } return v; } }
Use Quick Union to optimize the path split or path halving based on rank
It can be guaranteed that the amortized time complexity of each operation is O(a(n)), a(n)
The above is the detailed content of Example analysis of union-find in java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.
