Home Web Front-end Front-end Q&A How to import javascript into node.js desktop application

How to import javascript into node.js desktop application

Apr 25, 2023 am 10:43 AM

With the growth of web applications, JavaScript has become one of the most popular programming languages ​​for development. However, as technology advances, JavaScript is no longer limited to development in a web browser environment. Now, we can use JavaScript to build rich desktop applications. One possible way is to use Node.js.

Node.js is an open source JavaScript runtime environment for building efficient and scalable web and server-side applications. It is cross-platform and has a powerful modular system that helps developers build desktop applications easily.

With Node.js, we can use the Electron framework to build cross-platform desktop applications. Electron uses Node.js and Chromium as its foundation, allowing developers to build desktop applications using web technologies such as HTML, CSS, and JavaScript.

In this article, we will introduce how to use Node.js and the Electron framework to build desktop applications, including how to implement the function of entering N code.

Creating Electron Application

First, we need to make sure Node.js is installed on our computer. Next, let's start creating an Electron application. We will use npm, the package manager for Node.js, to create a new Electron project.

Open a terminal and enter the following command:

npm init -y
Copy after login

This will create a new Node.js project. Now, install Electron dependencies:

npm install electron --save-dev
Copy after login

Now, create a main.js file as your main process file. This file will contain the logic for your application:

const { app, BrowserWindow } = require('electron');

function createWindow() {
  const win = new BrowserWindow({
    width: 800,
    height: 600,
    webPreferences: {
      nodeIntegration: true
    }
  });

  win.loadFile('index.html');

  win.webContents.openDevTools();
}

app.whenReady().then(() => {
  createWindow();

  app.on('activate', function () {
    if (BrowserWindow.getAllWindows().length === 0) createWindow();
  });
});

app.on('window-all-closed', function () {
  if (process.platform !== 'darwin') app.quit();
});
Copy after login

The above code will create a window and load the index.html file into the window. Of course, at this point our application has no interface. Next, we will create an HTML file for interface design and JavaScript code writing.

To show how to record the N code, please create a new HTML file and add the following content:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>N Code Recorder</title>
</head>
<body>
  <h1>N Code Recorder</h1>

  <textarea id="code-input"></textarea>
  <br />
  <button id="record-button">Record</button>
  <button id="stop-button">Stop</button>

  <script src="renderer.js"></script>
</body>
</html>
Copy after login

In this HTML file, we added a text area for entering the N code, And added a record button and a stop button. At the same time, we also added a JavaScript file for front-end interactive logic implementation.

Implementing the recording function of N code

Next, we will create JavaScript code for controlling the record button and stop button. Create a JavaScript file named renderer.js in the root directory of the project and add the following code:

const { desktopCapturer } = require('electron');

const codeInput = document.getElementById('code-input');
const recordButton = document.getElementById('record-button');
const stopButton = document.getElementById('stop-button');

let mediaRecorder;
const recordedChunks = [];

recordButton.onclick = async () => {
  try {
    const inputSources = await desktopCapturer.getSources({ types: ['window', 'screen'] });

    const selectedSource = await selectSource(inputSources);

    const stream = await navigator.mediaDevices.getUserMedia({
      audio: false,
      video: {
        mandatory: {
          chromeMediaSource: 'desktop',
          chromeMediaSourceId: selectedSource.id,
        }
      }
    });

    mediaRecorder = new MediaRecorder(stream, { mimeType: 'video/webm; codecs=vp9' });

    mediaRecorder.ondataavailable = handleDataAvailable;
    mediaRecorder.start();

    recordButton.style.background = 'red';
  } catch (e) {
    console.log(e);
  }
}

stopButton.onclick = () => {
  mediaRecorder.stop();
  recordButton.style.background = '';
}

function handleDataAvailable(event) {
  console.log('data-available');
  recordedChunks.push(event.data);
}

async function selectSource(inputSources) {
  return new Promise((resolve, reject) => {
    const options = inputSources.map(source => {
      return {
        label: source.name,
        value: source,
      };
    });

    const dropdown = document.createElement('select');
    dropdown.className = 'form-control';
    options.forEach(option => {
      const element = document.createElement('option');
      element.label = option.label;
      element.value = option.value.id;
      dropdown.appendChild(element);
    });

    dropdown.onchange = () => resolve(options[dropdown.selectedIndex].value);

    document.body.appendChild(dropdown);
  });
}
Copy after login

Now, we have implemented the logic of the record and stop buttons in JavaScript code. When the user presses the record button, we use the desktopCapturer API to get the stream from the screenshot selected by the user. We instantiate the media recorder using the MediaRecorder API and push the received data fragments into an array. When the user presses the stop button, we call the stop method of MediaRecorder to stop recording. The data received will be used for future N-code translation.

N Transcoder

Now we have created the JavaScript code for recording and stopping the media stream. Next, we will introduce how to use an open source online media converter to convert recorded media streams to N-code.

We can use the open source Web media converter CloudConvert to convert media streams to N-code. CloudConvert provides a REST API that helps us easily convert media streams or files to other formats like N-code. To do this, we need to install the cloudconvert package in the project.

Open a terminal and enter the following command:

npm install cloudconvert --save
Copy after login

Next, we will use CloudConvert’s REST API to convert the recorded media stream to N-code and add it to our application.

const cloudconvert = require('cloudconvert');

const apikey = 'YOUR_API_KEY';
const input = 'webm';
const output = 'n';

const convertStream = cloudconvert.convert({
  apiKey: apikey,
  inputformat: input,
  outputformat: output,
});

recordButton.onclick = async () => {
  try {
    // ...

    mediaRecorder.onstop = () => {
      console.log('mediaRecorder.onstop', recordedChunks);

      const blob = new Blob(recordedChunks, {
        type: 'video/webm; codecs=vp9'
      });

      const reader = new FileReader();

      reader.readAsArrayBuffer(blob);

      reader.onloadend = async () => {
        const buffer = Buffer.from(reader.result);

        await convertStream.start({
          input: 'upload',
          inputformat: input,
          file: buffer.toString('base64'),
        });

        const links = await convertStream.getLinks();

        console.log(links);
        codeInput.value = links[output];
      };

      recordedChunks.length = 0;
    };

    // ...
  } catch (e) {
    console.log(e);
  }
}
Copy after login

In the above code, we set the apiKey, input format and output format of the cloud conversion API as variables. After recording the media stream, we push the data into the recordedChunks array, then use the Blob API to create a Blob object containing the recorded data, and use the FileReader API to read the BLOB data. Once we obtain the blob data, we convert it to Base64 format using the Buffer API and then submit the Base64-encoded recording data for conversion using CloudConvert’s REST API.

Finally, we add the converted N code to the UI of the application.

Conclusion

In this article, we covered how to create a desktop application using Node.js and the Electron framework, and how to convert recorded data using JavaScript and the Cloud Conversion API. Media streams are converted to N-code. Finally, we show how to add the converted N-code to the application's UI.

Desktop applications can be easily built using Node.js and the Electron framework, while JavaScript and other open source libraries can make desktop application implementation simpler and easier. Using the cloud conversion API can provide us with powerful media conversion capabilities. I hope this article helped you learn how to build feature-rich desktop applications.

The above is the detailed content of How to import javascript into node.js desktop application. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1653
14
PHP Tutorial
1251
29
C# Tutorial
1224
24
React's Role in HTML: Enhancing User Experience React's Role in HTML: Enhancing User Experience Apr 09, 2025 am 12:11 AM

React combines JSX and HTML to improve user experience. 1) JSX embeds HTML to make development more intuitive. 2) The virtual DOM mechanism optimizes performance and reduces DOM operations. 3) Component-based management UI to improve maintainability. 4) State management and event processing enhance interactivity.

React and the Frontend: Building Interactive Experiences React and the Frontend: Building Interactive Experiences Apr 11, 2025 am 12:02 AM

React is the preferred tool for building interactive front-end experiences. 1) React simplifies UI development through componentization and virtual DOM. 2) Components are divided into function components and class components. Function components are simpler and class components provide more life cycle methods. 3) The working principle of React relies on virtual DOM and reconciliation algorithm to improve performance. 4) State management uses useState or this.state, and life cycle methods such as componentDidMount are used for specific logic. 5) Basic usage includes creating components and managing state, and advanced usage involves custom hooks and performance optimization. 6) Common errors include improper status updates and performance issues, debugging skills include using ReactDevTools and Excellent

React Components: Creating Reusable Elements in HTML React Components: Creating Reusable Elements in HTML Apr 08, 2025 pm 05:53 PM

React components can be defined by functions or classes, encapsulating UI logic and accepting input data through props. 1) Define components: Use functions or classes to return React elements. 2) Rendering component: React calls render method or executes function component. 3) Multiplexing components: pass data through props to build a complex UI. The lifecycle approach of components allows logic to be executed at different stages, improving development efficiency and code maintainability.

Frontend Development with React: Advantages and Techniques Frontend Development with React: Advantages and Techniques Apr 17, 2025 am 12:25 AM

The advantages of React are its flexibility and efficiency, which are reflected in: 1) Component-based design improves code reusability; 2) Virtual DOM technology optimizes performance, especially when handling large amounts of data updates; 3) The rich ecosystem provides a large number of third-party libraries and tools. By understanding how React works and uses examples, you can master its core concepts and best practices to build an efficient, maintainable user interface.

React's Ecosystem: Libraries, Tools, and Best Practices React's Ecosystem: Libraries, Tools, and Best Practices Apr 18, 2025 am 12:23 AM

The React ecosystem includes state management libraries (such as Redux), routing libraries (such as ReactRouter), UI component libraries (such as Material-UI), testing tools (such as Jest), and building tools (such as Webpack). These tools work together to help developers develop and maintain applications efficiently, improve code quality and development efficiency.

The Future of React: Trends and Innovations in Web Development The Future of React: Trends and Innovations in Web Development Apr 19, 2025 am 12:22 AM

React's future will focus on the ultimate in component development, performance optimization and deep integration with other technology stacks. 1) React will further simplify the creation and management of components and promote the ultimate in component development. 2) Performance optimization will become the focus, especially in large applications. 3) React will be deeply integrated with technologies such as GraphQL and TypeScript to improve the development experience.

React: The Power of a JavaScript Library for Web Development React: The Power of a JavaScript Library for Web Development Apr 18, 2025 am 12:25 AM

React is a JavaScript library developed by Meta for building user interfaces, with its core being component development and virtual DOM technology. 1. Component and state management: React manages state through components (functions or classes) and Hooks (such as useState), improving code reusability and maintenance. 2. Virtual DOM and performance optimization: Through virtual DOM, React efficiently updates the real DOM to improve performance. 3. Life cycle and Hooks: Hooks (such as useEffect) allow function components to manage life cycles and perform side-effect operations. 4. Usage example: From basic HelloWorld components to advanced global state management (useContext and

React vs. Backend Frameworks: A Comparison React vs. Backend Frameworks: A Comparison Apr 13, 2025 am 12:06 AM

React is a front-end framework for building user interfaces; a back-end framework is used to build server-side applications. React provides componentized and efficient UI updates, and the backend framework provides a complete backend service solution. When choosing a technology stack, project requirements, team skills, and scalability should be considered.

See all articles