Home Backend Development Golang Example demonstrates how golang implements linked list reversal

Example demonstrates how golang implements linked list reversal

Apr 18, 2023 am 09:07 AM

Linked list inversion is a classic algorithm problem and a very important knowledge point in data structures and algorithms. Linked list inversion can be widely used in practice and interviews, so it is very necessary for programmers to master the linked list inversion algorithm.

It is also very simple to implement the linked list reversal algorithm in Go language. Below we will demonstrate how to implement the linked list reversal algorithm.

  1. Basics of linked lists

First of all, let’s briefly introduce the basic knowledge of linked lists. A linked list is a non-linear data structure that consists of multiple nodes. Each node has two properties: one that stores the value of the data element, and another that is a pointer to the next node.

Linked lists have many advantages over arrays. For example, elements can be added or deleted dynamically without knowing the number of elements stored in the linked list in advance.

A simple linked list node can be defined as:

type ListNode struct {
    Val  int
    Next *ListNode
}
Copy after login

In this definition, Val is the value stored in this node, Next is a Pointer to the next node. If this node is the last one in the linked list, Next points to nil.

The head node of the linked list represents the beginning of the linked list, often also called "sentinel node" or "virtual node". It doesn't store any value, just points to the first actual node.

  1. Linked list reversal algorithm

Now we begin to explain the implementation of the linked list reversal algorithm. The basic idea of ​​the linked list reversal algorithm is to traverse the entire linked list, reverse the direction of the pointer of each node, and finally point the head node to the tail node of the original linked list to complete the reversal of the entire linked list.

The key process of the linked list reversal algorithm is the reversal of the pointer of each node. The specific implementation method is as follows:

// 将链表反转
func reverseList(head *ListNode) *ListNode {
    var prev, cur *ListNode
    cur = head
    for cur != nil {
        cur.Next, prev, cur = prev, cur, cur.Next
    }
    return prev
}
Copy after login

The core of this algorithm is the definition of two pointersprev and cur represent the previous node and the current node respectively. Traverse the entire linked list starting from the head node, exchanging the points of the prev and cur pointers each time, while letting cur point to the next node.

  1. Testing

Finally, we can verify whether our code is correct through some test cases.

func main() {
    // 初始化一个链表
    n1 := &ListNode{Val: 1}
    n2 := &ListNode{Val: 2}
    n3 := &ListNode{Val: 3}
    n4 := &ListNode{Val: 4}
    n1.Next = n2
    n2.Next = n3
    n3.Next = n4
    // 打印原链表
    printList(n1)
    // 反转链表
    newHead := reverseList(n1)
    // 打印反转后的链表
    printList(newHead)
}

// 打印链表
func printList(head *ListNode) {
    p := head
    for p != nil {
        fmt.Printf("%d -> ", p.Val)
        p = p.Next
    }
    fmt.Println("nil")
}
Copy after login

Output:

1 -> 2 -> 3 -> 4 -> nil
4 -> 3 -> 2 -> 1 -> nil
Copy after login
  1. Summary

Linked list reversal is a very classic algorithm problem. This article introduces how to implement linked lists in Go language Invert the algorithm. By learning this algorithm, we further consolidate and deepen our understanding of linked lists and pointers.

The above is the detailed content of Example demonstrates how golang implements linked list reversal. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1666
14
PHP Tutorial
1273
29
C# Tutorial
1252
24
Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Getting Started with Go: A Beginner's Guide Getting Started with Go: A Beginner's Guide Apr 26, 2025 am 12:21 AM

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

See all articles