


Ray, the open source AI framework behind ChatGPT, is now worth $1 billion
Text-generating artificial intelligence has taken the internet by storm recently: ChatGPT is popular for its ability to provide highly detailed, near-lifelike answers to almost any question one can think of. The emergence of large model applications has made people full of confidence in AI technology breakthroughs, but few people know that behind it, a distributed machine learning framework is powering this generative AI revolution.
Distributed computing framework Ray from A16z-backed startup Anyscale is key to enabling OpenAI to power up its training models like ChatGPT. Ray is behind all of OpenAI's recent large-scale language models — and it may also be the framework behind OpenAI's much-anticipated GPT-4. With the continuous implementation of large-scale model technology, industry insiders believe that an industry worth billions of dollars is being formed by generating content that is close to humans.
In this field, Ray is the most influential framework. Before its advent, OpenAI used a custom collection of tools to develop large models. But OpenAI president Greg Brockman said at the Ray Summit earlier this year that the company had turned to Ray as the challenges it faced increased.
Lukas Biewald, CEO of software company Weights & Biases, believes that Ray is already a hot rising star in the AI world. "Because of new tools, you can run the same code on a laptop and on a large distributed server. That's a huge change, and it's going to increase in importance as the models get bigger," Biewald said.
A billion-dollar bet
As the technology matures, Ray has attracted the attention of the capital market. Anyscale's equity has become a scarce commodity, with Business Insider reporting that its latest funding round, an extension of its Series C round that valued it at more than $1 billion, closed within days, according to people familiar with the matter.
Some investors have described Anyscale as Horowitz’s hopeful “next Databricks” — a description that seems reasonable, given that the startup’s co-founder, Ion Stoica He is the co-founder of Databricks, a data giant with a market capitalization of $31 billion.
“Artificial intelligence is developing at an incredible pace and people are trying new approaches all the time,” said Robert Nishihara, CEO of Anyscale. "ChatGPT combines a lot of previous work on large language models. On top of this, you need to have an infrastructure that enables flexibility, rapid innovation, and expansion of different algorithms and methods."
With ever-larger models behind hot new tools like ChatGPT, tech companies are having to rethink the way they develop AI from the ground up. Ray was born to make it easier to train these massive models and can contain hundreds of billions of data points, giving each response a quasi-lifelike feel.
How Ray becomes the tool of choice for machine learning
Ray is a distributed computing framework based on memory sharing, suitable for fine-grained parallel computing and heterogeneous computing. It provides an underlying infrastructure for managing the complex task of distributing the work of training machine learning models.
In 2017, UC Berkeley researchers submitted Ray's paper "Ray: A Distributed Framework for Emerging AI Applications" for the first time:
- Paper link: https://arxiv.org/abs/1712.05889
- GitHub: https:// github.com/ray-project/ray
#In this work, the researchers predict what the next generation of AI applications will look like: one with continuous interactions with the environment , and learn from interactive actions. These applications must increasingly complete tasks in dynamic environments, react to changes in the environment, and perform a series of actions to achieve long-term goals. These characteristics have put forward new and demanding system requirements for the performance and flexibility of the operating environment, so researchers have proposed a distributed-based Ray framework.
Ray implements a unified interface that can express task parallelism and actor-based computation, supported by a single dynamic execution engine. To meet performance requirements, Ray uses a distributed scheduler and distributed fault-tolerant storage to manage the system's control state. It is the first distributed computing framework that unifies training, simulation and services. It unifies role parallel (actor) and task parallel (task) calculations based on a dynamic task execution engine, and ensures the high scalability and high performance of the framework. Fault tolerance.
Ray's architecture.
Based on this work, in December 2019, Robert Nishihara, Philipp Moritz and Ion Stoica of UC Berkeley and Berkeley Professor Michael I. Jordan founded Anyscale. The company has raised $260 million so far.
Machine learning practitioners can often run small models using limited data sets on their laptops, such as simple models that predict what products users will buy. . However, laptops are not feasible for very large models like ChatGPT, which require massive servers to train.
Training a model using a large number of devices faces an important challenge - coordinating training on different hardware. Ray just solves this problem. It provides practitioners with a mechanism to manage different hardware as a unit to determine what data goes where, handle failures, etc. The hardware types span Google Cloud, AWS and other A portfolio of products that address the same problem. In addition, Ray also extended "actor", a key programming concept in other languages, to Python, which is known to be the language of choice for machine learning programs.
As a distributed computing framework, Ray has two key advantages, namely location-aware (Locality-aware) and task placement (task placement) ). As shown in the figure below, Ray is able to scale out the system to support high-throughput fine-grained tasks while maintaining fault tolerance and low-latency task scheduling.
Ray removes significant complexity from training large models for OpenAI, freeing up the company to focus on the model’s critical capabilities .
The next generation of AI requires new development tools, and Ray is just one of a rapidly emerging set of next-generation machine learning tools that are rapidly disrupting the way AI is developed. For example, Google's JAX framework has also received huge attention. JAX is expected to become the backbone of Google's core machine learning tools and has been widely adopted in DeepMind and Google Brain.
Similarly, Coiled, a startup backed by FirstMark Capital and Bessemer Venture Partners, has developed a parallel computing framework called Dask.
Large-scale language models are unlocking more potential recently, and these new machine learning tools will build more powerful language models for technology giants and startups in the industry.
The above is the detailed content of Ray, the open source AI framework behind ChatGPT, is now worth $1 billion. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

DMA in C refers to DirectMemoryAccess, a direct memory access technology, allowing hardware devices to directly transmit data to memory without CPU intervention. 1) DMA operation is highly dependent on hardware devices and drivers, and the implementation method varies from system to system. 2) Direct access to memory may bring security risks, and the correctness and security of the code must be ensured. 3) DMA can improve performance, but improper use may lead to degradation of system performance. Through practice and learning, we can master the skills of using DMA and maximize its effectiveness in scenarios such as high-speed data transmission and real-time signal processing.

Handling high DPI display in C can be achieved through the following steps: 1) Understand DPI and scaling, use the operating system API to obtain DPI information and adjust the graphics output; 2) Handle cross-platform compatibility, use cross-platform graphics libraries such as SDL or Qt; 3) Perform performance optimization, improve performance through cache, hardware acceleration, and dynamic adjustment of the details level; 4) Solve common problems, such as blurred text and interface elements are too small, and solve by correctly applying DPI scaling.

C performs well in real-time operating system (RTOS) programming, providing efficient execution efficiency and precise time management. 1) C Meet the needs of RTOS through direct operation of hardware resources and efficient memory management. 2) Using object-oriented features, C can design a flexible task scheduling system. 3) C supports efficient interrupt processing, but dynamic memory allocation and exception processing must be avoided to ensure real-time. 4) Template programming and inline functions help in performance optimization. 5) In practical applications, C can be used to implement an efficient logging system.

In MySQL, add fields using ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column, delete fields using ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop. When adding fields, you need to specify a location to optimize query performance and data structure; before deleting fields, you need to confirm that the operation is irreversible; modifying table structure using online DDL, backup data, test environment, and low-load time periods is performance optimization and best practice.

Measuring thread performance in C can use the timing tools, performance analysis tools, and custom timers in the standard library. 1. Use the library to measure execution time. 2. Use gprof for performance analysis. The steps include adding the -pg option during compilation, running the program to generate a gmon.out file, and generating a performance report. 3. Use Valgrind's Callgrind module to perform more detailed analysis. The steps include running the program to generate the callgrind.out file and viewing the results using kcachegrind. 4. Custom timers can flexibly measure the execution time of a specific code segment. These methods help to fully understand thread performance and optimize code.

The built-in quantization tools on the exchange include: 1. Binance: Provides Binance Futures quantitative module, low handling fees, and supports AI-assisted transactions. 2. OKX (Ouyi): Supports multi-account management and intelligent order routing, and provides institutional-level risk control. The independent quantitative strategy platforms include: 3. 3Commas: drag-and-drop strategy generator, suitable for multi-platform hedging arbitrage. 4. Quadency: Professional-level algorithm strategy library, supporting customized risk thresholds. 5. Pionex: Built-in 16 preset strategy, low transaction fee. Vertical domain tools include: 6. Cryptohopper: cloud-based quantitative platform, supporting 150 technical indicators. 7. Bitsgap:

How to achieve the effect of mouse scrolling event penetration? When we browse the web, we often encounter some special interaction designs. For example, on deepseek official website, �...
