How to implement quadtree using Golang
Quadtree (Quadtree) is a tree data structure based on spatial division, which is widely used in geographic information systems (GIS), How to implement quadtree using Golang processing, natural language processing and other fields. It is characterized by fast and efficient spatial queries and spatial indexes.
In this article, we will introduce how to implement a quadtree using Golang.
1. What is a quadtree
A quadtree is a variant of a binary tree, with each node containing up to four child nodes. In two-dimensional space, it can be seen as dividing the plane into four quadrants. As shown in the figure below:
#Using a quadtree can divide the space into smaller and smaller areas, making the query more efficient. For example, if we want to query whether a certain point is within an area, we can first determine the quadrant to which the point belongs, then recursively enter the quadrant and continue the query until the smallest area is found, and then judge all points in it.
2. Implementation of Quadtree
First, we need to define a node structure:
type QuadNode struct { NW *QuadNode // 西北节点 NE *QuadNode // 东北节点 SW *QuadNode // 西南节点 SE *QuadNode // 东南节点 X float64 // 节点的横坐标 Y float64 // 节点的纵坐标 }
The node contains four child nodes and node coordinates. When implementing the query function, we need to recursively access child nodes. Therefore, we can define a QuadTree structure:
type QuadTree struct { root *QuadNode }
Each QuadTree object contains a root node. Next, we implement some basic operations. The first is to insert a node into QuadTree:
func (t *QuadTree) Insert(x, y float64) { if t.root == nil { t.root = &QuadNode{X: x, Y: y} } else { t.root.Insert(x, y) } }
If the root node of QuadTree is empty, use this node as the root node. Otherwise, insert the node into a child node of the root node. The insertion operation of the node can be performed recursively until a suitable child node is found:
func (n *QuadNode) Insert(x, y float64) { switch { case x >= n.X && y >= n.Y: if n.NE == nil { n.NE = &QuadNode{X: x, Y: y} } else { n.NE.Insert(x, y) } case x >= n.X && y = n.Y: if n.NW == nil { n.NW = &QuadNode{X: x, Y: y} } else { n.NW.Insert(x, y) } case x <p>In the query operation, we can recursively enter the child node to search. For each node, we need to determine whether it contains the target point. If included, add the node to the result set; otherwise, recursively enter its child nodes to continue searching: </p><pre class="brush:php;toolbar:false">func (t *QuadTree) QueryRange(x1, y1, x2, y2 float64) []*QuadNode { result := []*QuadNode{} t.root.QueryRange(x1, y1, x2, y2, &result) return result } func (n *QuadNode) QueryRange(x1, y1, x2, y2 float64, result *[]*QuadNode) { if n == nil { return } if n.X >= x1 && n.X = y1 && n.Y = x1 && n.X = y1 && n.Y <p> We can also implement other functions such as deleting nodes and calculating the number of nodes, which will not be described here. Finally, we can use the following code to test the implemented quadtree: </p><pre class="brush:php;toolbar:false">func main() { tree := &QuadTree{} tree.Insert(1, 2) tree.Insert(2, 3) tree.Insert(3, 4) tree.Insert(4, 5) result := tree.QueryRange(2, 2, 4, 4) fmt.Println(result) }
This code inserts four points in the QuadTree and queries the diagonals with (2, 2) and (4, 4) All points within the rectangle. The query results are [(2, 3), (3, 4)], as expected.
3. Summary
This article introduces the process of using Golang to implement a quadtree. Quadtree is an efficient spatial index method that can play an important role in processing large amounts of spatial data. Using Golang to implement quadtree code is simple and easy to understand, and can easily process two-dimensional spatial data.
The above is the detailed content of How to implement quadtree using Golang. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys
