In-depth analysis of distributed locks in Redis
This article mainly introduces you to the implementation and code analysis of distributed locks in Redis. I hope it will be helpful to you!
Redis Distributed Lock
Distributed lock handles are used in everyone’s projects and are usually used to order data. Operation scenarios, such as refunding an order (if it can be refunded multiple times). Or users place orders through multiple terminals. [Related recommendations: Redis video tutorial]
Maven dependency
I am mainly based on Spring-Boot 2.1.2
Jedis
Implementation
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.1.2.RELEASE</version> </parent> <groupId>cn.edu.cqvie</groupId> <artifactId>redis-lock</artifactId> <version>1.0-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <java.version>1.8</java.version> <redis.version>2.9.0</redis.version> <spring-test.version>5.0.7</spring-test.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-autoconfigure</artifactId> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-redis</artifactId> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>${redis.version}</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-logging</artifactId> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>log4j-over-slf4j</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project>
Configuration file
application.properties
The content of the configuration file is as follows:
spring.redis.host=127.0.0.1 spring.redis.port=6379 spring.redis.password= spring.redis.timeout=30000 spring.redis.jedis.pool.max-active=8 spring.redis.jedis.pool.min-idle=2 spring.redis.jedis.pool.max-idle=4 logging.level.root=INFO
Interface definition
Interface definition, for locking our core, there is actually only one methodlock
and unlock
.
public interface RedisLock { long TIMEOUT_MILLIS = 30000; int RETRY_MILLIS = 30000; long SLEEP_MILLIS = 10; boolean tryLock(String key); boolean lock(String key); boolean lock(String key, long expire); boolean lock(String key, long expire, long retryTimes); boolean unlock(String key); }
Distributed lock implementation
My implementation is through setnx. , if tryLock
logic exists, it will retry by spin
// AbstractRedisLock.java 抽象类 public abstract class AbstractRedisLock implements RedisLock { @Override public boolean lock(String key) { return lock(key, TIMEOUT_MILLIS); } @Override public boolean lock(String key, long expire) { return lock(key, TIMEOUT_MILLIS, RETRY_MILLIS); } } // 具体实现 @Component public class RedisLockImpl extends AbstractRedisLock { private Logger logger = LoggerFactory.getLogger(getClass()); @Autowired private RedisTemplate<String, String> redisTemplate; private ThreadLocal<String> threadLocal = new ThreadLocal<String>(); private static final String UNLOCK_LUA; static { StringBuilder sb = new StringBuilder(); sb.append("if redis.call(\"get\",KEYS[1]) == ARGV[1] "); sb.append("then "); sb.append(" return redis.call(\"del\",KEYS[1]) "); sb.append("else "); sb.append(" return 0 "); sb.append("end "); UNLOCK_LUA = sb.toString(); } @Override public boolean tryLock(String key) { return tryLock(key, TIMEOUT_MILLIS); } public boolean tryLock(String key, long expire) { try { return !StringUtils.isEmpty(redisTemplate.execute((RedisCallback<String>) connection -> { JedisCommands commands = (JedisCommands) connection.getNativeConnection(); String uuid = UUID.randomUUID().toString(); threadLocal.set(uuid); return commands.set(key, uuid, "NX", "PX", expire); })); } catch (Throwable e) { logger.error("set redis occurred an exception", e); } return false; } @Override public boolean lock(String key, long expire, long retryTimes) { boolean result = tryLock(key, expire); while (!result && retryTimes-- > 0) { try { logger.debug("lock failed, retrying...{}", retryTimes); Thread.sleep(SLEEP_MILLIS); } catch (InterruptedException e) { return false; } result = tryLock(key, expire); } return result; } @Override public boolean unlock(String key) { try { List<String> keys = Collections.singletonList(key); List<String> args = Collections.singletonList(threadLocal.get()); Long result = redisTemplate.execute((RedisCallback<Long>) connection -> { Object nativeConnection = connection.getNativeConnection(); if (nativeConnection instanceof JedisCluster) { return (Long) ((JedisCluster) nativeConnection).eval(UNLOCK_LUA, keys, args); } if (nativeConnection instanceof Jedis) { return (Long) ((Jedis) nativeConnection).eval(UNLOCK_LUA, keys, args); } return 0L; }); return result != null && result > 0; } catch (Throwable e) { logger.error("unlock occurred an exception", e); } return false; } }
Test code
Finally let’s take a look at how to use it. (The following is a simulated flash sale scenario)
@RunWith(SpringRunner.class) @SpringBootTest public class RedisLockImplTest { private Logger logger = LoggerFactory.getLogger(getClass()); @Autowired private RedisLock redisLock; @Autowired private StringRedisTemplate redisTemplate; private ExecutorService executors = Executors.newScheduledThreadPool(8); @Test public void lock() { // 初始化库存 redisTemplate.opsForValue().set("goods-seckill", "10"); List<Future> futureList = new ArrayList<>(); for (int i = 0; i < 100; i++) { futureList.add(executors.submit(this::seckill)); try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } } // 等待结果,防止主线程退出 futureList.forEach(action -> { try { action.get(); } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); } }); } public int seckill() { String key = "goods"; try { redisLock.lock(key); int num = Integer.valueOf(Objects.requireNonNull(redisTemplate.opsForValue().get("goods-seckill"))); if (num > 0) { redisTemplate.opsForValue().set("goods-seckill", String.valueOf(--num)); logger.info("秒杀成功,剩余库存:{}", num); } else { logger.error("秒杀失败,剩余库存:{}", num); } return num; } catch (Throwable e) { logger.error("seckill exception", e); } finally { redisLock.unlock(key); } return 0; } }
Summary
This article is a simple method of Redis lock The implementation method implements the lock retry operation based on jedis
.
However, there are still disadvantages. It does not support automatic renewal of locks, lock reentrancy, and fairness (currently implemented through spin, which is equivalent to an unfair method).
For more programming-related knowledge, please visit: Introduction to Programming! !
The above is the detailed content of In-depth analysis of distributed locks in Redis. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.
