Does docker support gpu?
Docker supports GPU, and docker can use GPU through nvidia-docker2. Configure the runtime to use nvidia in the daemon.json file. After starting the container, run nvidia-smi to see all GPUs.
Introduction to the method of mounting GPU with docker:
Using nvidia-docker2
In short, using nvidia-docker2, you can use the GPU effortlessly, just You need to configure the runtime. After starting the container using nvidia
cat /etc/docker/daemon.json { "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }, "exec-opts": ["native.cgroupdriver=systemd"] }
, you can see all GPU cards by running nvidia-smi:
[root@localhost] docker run -it 98b41a1e975d bash root@6db1dd28459d:/notebooks# nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 40C P0 57W / 300W | 4053MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 38C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 Tesla V100-SXM2... On | 00000000:8C:00.0 Off | 0 | | N/A 42C P0 46W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 Tesla V100-SXM2... On | 00000000:8D:00.0 Off | 0 | | N/A 39C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 4 Tesla V100-SXM2... On | 00000000:B3:00.0 Off | 0 | | N/A 39C P0 42W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 5 Tesla V100-SXM2... On | 00000000:B4:00.0 Off | 0 | | N/A 41C P0 57W / 300W | 7279MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 6 Tesla V100-SXM2... On | 00000000:B5:00.0 Off | 0 | | N/A 40C P0 45W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 7 Tesla V100-SXM2... On | 00000000:B6:00.0 Off | 0 | | N/A 41C P0 44W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
You can add some libraries through NVIDIA_DRIVER_CAPABILITIES. Through NVIDIA_VISIBLE_DEVICES you can only use certain GPU cards
[root@localhost cuda-9.0]# docker run -it --env NVIDIA_DRIVER_CAPABILITIES="compute,utility" --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash root@97bf127ff83a:/notebooks# nvidia-smi Tue Oct 15 09:29:45 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 39C P0 57W / 300W | 4053MiB / 16130MiB | 3% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 37C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
For more related tutorials, please pay attention to the docker tutorial column on the PHP Chinese website.
The above is the detailed content of Does docker support gpu?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Four ways to exit Docker container: Use Ctrl D in the container terminal Enter exit command in the container terminal Use docker stop <container_name> Command Use docker kill <container_name> command in the host terminal (force exit)

Methods for copying files to external hosts in Docker: Use the docker cp command: Execute docker cp [Options] <Container Path> <Host Path>. Using data volumes: Create a directory on the host, and use the -v parameter to mount the directory into the container when creating the container to achieve bidirectional file synchronization.

You can query the Docker container name by following the steps: List all containers (docker ps). Filter the container list (using the grep command). Gets the container name (located in the "NAMES" column).

Docker container startup steps: Pull the container image: Run "docker pull [mirror name]". Create a container: Use "docker create [options] [mirror name] [commands and parameters]". Start the container: Execute "docker start [Container name or ID]". Check container status: Verify that the container is running with "docker ps".

How to restart the Docker container: get the container ID (docker ps); stop the container (docker stop <container_id>); start the container (docker start <container_id>); verify that the restart is successful (docker ps). Other methods: Docker Compose (docker-compose restart) or Docker API (see Docker documentation).

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database

Create a container in Docker: 1. Pull the image: docker pull [mirror name] 2. Create a container: docker run [Options] [mirror name] [Command] 3. Start the container: docker start [Container name]

The methods to view Docker logs include: using the docker logs command, for example: docker logs CONTAINER_NAME Use the docker exec command to run /bin/sh and view the log file, for example: docker exec -it CONTAINER_NAME /bin/sh ; cat /var/log/CONTAINER_NAME.log Use the docker-compose logs command of Docker Compose, for example: docker-compose -f docker-com
