Is python financial big data analysis useful?
"Python Financial Big Data Analysis" is a Chinese translation book published by People's Posts and Telecommunications Press in December 2015. The author is [Germany] Yves Schilpisko and the translator is Yao Jun.
#"Financial Big Data Analysis with Python", the only professional book that explains in detail the use of Python to analyze and process financial big data; in the field of financial application development A must read for practitioners. It is suitable for developers in the financial industry who are interested in using Python for big data analysis and processing. (Recommended learning: Python video tutorial)
Content introduction
Python is known for its simplicity, easy-to-read, scalability and ease of use. The huge and active scientific computing community has been widely and rapidly used in the financial industry that requires analysis and processing of large amounts of data, and has become the preferred programming language for developing core applications in this industry.
"Python Financial Big Data Analysis" provides tips and tools for using Python for data analysis and developing related applications.
"Python Financial Big Data Analysis" is divided into 3 parts and 19 chapters in total.
Part 1 introduces the application of Python in finance. It covers the reasons why Python is used in the financial industry, Python’s infrastructure and tools, and some specific introductory examples of Python in quantitative finance. ;
Part 2 introduces the most important Python libraries, technologies and methods in financial analysis and application development. It covers Python data types and structures, data visualization with matplotlib, and financial time series data. Processing, high-performance input/output operations, high-performance Python technology and libraries, various mathematical tools needed in finance, random number generation and random process simulation, Python statistical applications, integration of Python and Excel, Python object-oriented programming and GUI development, integration of Python and Web technology, and development based on Web applications and Web services;
Part 3 focuses on the development of practical applications of Monte Carlo simulation options and derivatives pricing. The content covers the introduction of valuation frameworks, simulation of financial models, valuation of derivatives, valuation of investment portfolios, volatility options and other knowledge.
About the author
Yves Hilpsch is the founder and managing shareholder of Python Quants (Germany) GmbH and a co-owner of Python Quants (New York) GmbH founder. The group provides Python-based financial and derivatives analysis software (see http://pythonquants.com, http://quant-platfrom.com and http://dx-analytics.com), as well as Python and finance-related Consulting, development and training services.
Yves is also the author of Derivatives Analytics with Python (Wiley Finance, 2015). As a graduate student in business management with a PhD in mathematical finance, he teaches numerical methods in computational finance at the University of Saarland.
For more Python related technical articles, please visit the Python Tutorial column to learn!
The above is the detailed content of Is python financial big data analysis useful?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
