


Introduction to four methods of implementing Fibonacci sequence in JavaScript (code)
This article brings you an introduction to the four methods (code) of implementing the Fibonacci sequence in JavaScript. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you. .
A few days ago, I was asked about the implementation and optimization of the Fibonacci sequence in the interview. The scene was stuck for a long time. Now I will summarize it (implemented using js).
Title introduction
Fibonacci sequence is also called the golden section sequence, which refers to such a sequence: 1,1,2,3,5,8,13,21 ,34...., it has the following recursive method definition: F(1)=1,F(2)=1,F(n)=F(n-1) F(n-2)(n> =2, n is a positive integer), please use js to implement the Fibonacci function.
Method 1: Recursive implementation
Inspired by the recursion in the question, it can be implemented recursively. The code is as follows:
function fibonacci(n){ if(n < 0) throw new Error('输入的数字不能小于0'); if(n==1 || n==2){ return 1; }else{ return fibonacci1(n-1) + fibonacci1(n-2); } }
Advantages: The code is relatively simple and easy Understand;
Disadvantages: When the number is too large, it will become particularly slow. The reason is that when calculating F(9), you need to calculate F(8) and F(7), but when calculating F(8), you need to calculate F(7) and F(6), F(7) will be repeatedly calculated. Repeated calculation every time will cause unnecessary waste, so this method is not very good.
Method 2: Use closure to save each recursion value
From method 1, we can see that using ordinary recursion will cause unnecessary waste, so the first thing we think of is to save each recursion value. The recursive value generated this time is saved and can be used directly next time. The code is as follows:
function fibonacci(n){ if(n < 0) throw new Error('输入的数字不能小于0'); let arr = [0,1];//在外部函数中定义数组,内部函数给数组添加值 function calc(n){ if(n<2){ return arr[n]; } if(arr[n] != undefined){ return arr[n]; } let data = calc(n-1) + calc(n-2);//使用data将每次递归得到的值保存起来 arr[n] = data;//将每次递归得到的值放到数组中保存 return data; } return calc(n); }
Method 3: Directly using array implementation (dynamic programming)
The idea is similar to method 2. In order to avoid For subsequent repeated calculations, the calculated values need to be saved. We can directly use an array to save them.
function fibonacci(n){ var a = [0,1,1]; if(n < 0) throw new Error('输入的数字不能小于0'); if(n >= 3){ for(var i=3;i<=n;i++){ a[i] = a[i-1]+a[i-2]; } } return a[n]; }
Method 4: Directly use variables to implement
Compared with using arrays to store, using variables will not waste memory so much, because there will only be 3 variables in total. , but it also has disadvantages. It can only save the last calculated value and the first two values, and the previous values will be replaced.
function fibonacci(n){ var pre = 0;//表示前一个值 var cur = 1;//表示后一个值 var data;//表示当前值 if(n < 0) throw new Error('请输入大于0的值!'); if(n == 0) return 0; if(n == 1) return 1; if(n > 2){ for(var i=2;i<=n;i++){ data = pre + cur; pre = cur; cur = data; } } return data; }
Summary
In fact, most people think of the recursive method when calculating the Fibonacci sequence, but in terms of its event complexity, it is not a good method, then Our optimization idea may be to use space to exchange time, which is to save the values generated by recursion to avoid repeated calculations next time.
The above is the detailed content of Introduction to four methods of implementing Fibonacci sequence in JavaScript (code). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Usage: In JavaScript, the insertBefore() method is used to insert a new node in the DOM tree. This method requires two parameters: the new node to be inserted and the reference node (that is, the node where the new node will be inserted).

JavaScript is a programming language widely used in web development, while WebSocket is a network protocol used for real-time communication. Combining the powerful functions of the two, we can create an efficient real-time image processing system. This article will introduce how to implement this system using JavaScript and WebSocket, and provide specific code examples. First, we need to clarify the requirements and goals of the real-time image processing system. Suppose we have a camera device that can collect real-time image data
