Python calls xlsxwriter to create xlsx method
这篇文章主要介绍了关于python调用xlsxwriter创建xlsx的方法,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
通过pip安装xlsxwriter
pip install xlsxwriter
下面进行基本的操作演示:
1. 首先创建一个excel的文档
workbook = xlsxwriter.Workbook(dir)
2. 在文档中创建表
table_name = 'sheet1' worksheet = workbook.add_worksheet(table_name) # 创建一个表名为‘sheet1'的表,并返回这个表对象
3. 创建表后,就可以在表格上面进行写入操作
worksheet.write_column('A1', 5) # 在A1单元格写入数字5
有时候,我们想修改输入内容的格式,例如设置字体颜色加粗,斜体,日期格式等,这时候,就可以通过使用xlsxwriter提供的格式类。
具体可见:http://xlsxwriter.readthedocs.io/format.html
下面以写入一个粗体的红色的日期类为例
import datetime # 需要先把字符串格式化成日期 date_time = datetime.datetime.strptime('2017-1-25', '%Y-%m-%d') # 定义一个格式类,粗体的红色的日期 date_format = workbook.add_format({'bold': True, 'font_color': 'red', 'num_format': 'yyyy-mm-dd'}) # 写入该格式类 worksheet.write_column('A2', date_time, date_format)
4. xlsxwriter支持很多图表格式的插入
具体可以参见:http://xlsxwriter.readthedocs.io/chart.html
这里摘抄一段图标类型的介绍:
excel定义的图分两级类别描述,第一级分别有九大类,如下所示
area: 面积图
bar: 转置直方图
column: 柱状图
line: 直线图
pie: 饼状图
doughnut: 环形图
scatter: 散点图
stock: 股票趋势图
radar: 雷达图
第二级则是描述是否有连线,是否有平滑曲线等细节调整。
area stacked percent_stacked bar stacked percent_stacked column stacked percent_stacked scatter straight_with_markers straight smooth_with_markers smooth radar with_markers filled
下面举例绘制一个散点图。
chart1 = workbook.add_chart({'type': 'scatter', 'subtype': 'straight'}) chart1.set_title({'name': '图1'}) chart1.add_series({ 'name': '系列1', # 集合范围 'categories': '=sheet1!$A$1:$A$89', # 数值范围 'values': '=sheet1!$B$1:$B$89'), # 是否连线 'line': {'none': True}, # 默认图格式 'marker': {'type': 'automatic'}, }) # 设置y轴的范围 chart1.set_y_axis({'max': 1.1, 'min': 0}) chart1.set_size({'x_scale': 2, 'y_scale': 2}) # 把图例插入到表中的C2位置,并且设置横轴偏移量为25,纵轴偏移量为10 worksheet.insert_chart('C2', chart1, {'x_offset': 25, 'y_offset': 10})
以上这篇
详细的官方文档可见:http://xlsxwriter.readthedocs.io/
通过pip安装xlsxwriter
pip install xlsxwriter
下面进行基本的操作演示:
1. 首先创建一个excel的文档
workbook = xlsxwriter.Workbook(dir)
2. 在文档中创建表
table_name = 'sheet1' worksheet = workbook.add_worksheet(table_name) # 创建一个表名为‘sheet1'的表,并返回这个表对象
3. 创建表后,就可以在表格上面进行写入操作
worksheet.write_column('A1', 5) # 在A1单元格写入数字5
有时候,我们想修改输入内容的格式,例如设置字体颜色加粗,斜体,日期格式等,这时候,就可以通过使用xlsxwriter提供的格式类。
具体可见:http://xlsxwriter.readthedocs.io/format.html
下面以写入一个粗体的红色的日期类为例
import datetime # 需要先把字符串格式化成日期 date_time = datetime.datetime.strptime('2017-1-25', '%Y-%m-%d') # 定义一个格式类,粗体的红色的日期 date_format = workbook.add_format({'bold': True, 'font_color': 'red', 'num_format': 'yyyy-mm-dd'}) # 写入该格式类 worksheet.write_column('A2', date_time, date_format)
4. xlsxwriter支持很多图表格式的插入
具体可以参见:http://xlsxwriter.readthedocs.io/chart.html
这里摘抄一段图标类型的介绍:
excel定义的图分两级类别描述,第一级分别有九大类,如下所示
area: 面积图
bar: 转置直方图
column: 柱状图
line: 直线图
pie: 饼状图
doughnut: 环形图
scatter: 散点图
stock: 股票趋势图
radar: 雷达图
第二级则是描述是否有连线,是否有平滑曲线等细节调整。
area stacked percent_stacked bar stacked percent_stacked column stacked percent_stacked scatter straight_with_markers straight smooth_with_markers smooth radar with_markers filled
下面举例绘制一个散点图。
chart1 = workbook.add_chart({'type': 'scatter', 'subtype': 'straight'}) chart1.set_title({'name': '图1'}) chart1.add_series({ 'name': '系列1', # 集合范围 'categories': '=sheet1!$A$1:$A$89', # 数值范围 'values': '=sheet1!$B$1:$B$89'), # 是否连线 'line': {'none': True}, # 默认图格式 'marker': {'type': 'automatic'}, }) # 设置y轴的范围 chart1.set_y_axis({'max': 1.1, 'min': 0}) chart1.set_size({'x_scale': 2, 'y_scale': 2}) # 把图例插入到表中的C2位置,并且设置横轴偏移量为25,纵轴偏移量为10 worksheet.insert_chart('C2', chart1, {'x_offset': 25, 'y_offset': 10})
相关推荐:
The above is the detailed content of Python calls xlsxwriter to create xlsx method. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
