Example of Java implementing redisson distributed lock
This article mainly introduces Java programming redisson to implement distributed lock code examples. The editor thinks it is quite good. I will share it with you here for the reference of friends in need.
Due to being very busy at work recently, I haven’t updated my blog for a long time. Today I bring you an article about Redisson’s implementation of distributed locks. Well, without further ado, let’s go directly to the topic.
1. Reentrant Lock
Redisson’s distributed reentrant lock RLock Java object implements java.util.concurrent. The locks.Lock interface also supports automatic expiration and unlocking.
public void testReentrantLock(RedissonClient redisson){ RLock lock = redisson.getLock("anyLock"); try{ // 1. 最常见的使用方法 //lock.lock(); // 2. 支持过期解锁功能,10秒钟以后自动解锁, 无需调用unlock方法手动解锁 //lock.lock(10, TimeUnit.SECONDS); // 3. 尝试加锁,最多等待3秒,上锁以后10秒自动解锁 boolean res = lock.tryLock(3, 10, TimeUnit.SECONDS); if(res){ //成功 // do your business } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } }
Redisson also provides asynchronous execution related methods for distributed locks:
public void testAsyncReentrantLock(RedissonClient redisson){ RLock lock = redisson.getLock("anyLock"); try{ lock.lockAsync(); lock.lockAsync(10, TimeUnit.SECONDS); Future<Boolean> res = lock.tryLockAsync(3, 10, TimeUnit.SECONDS); if(res.get()){ // do your business } } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } finally { lock.unlock(); } }
2. Fair Lock
Redisson distributed reentrant fair lock is also an RLock object that implements the java.util.concurrent.locks.Lock interface. While providing the automatic expiration unlocking function, it also ensures that when multiple Redisson client threads request locks at the same time, priority is given to the thread that makes the request first.
public void testFairLock(RedissonClient redisson){ RLock fairLock = redisson.getFairLock("anyLock"); try{ // 最常见的使用方法 fairLock.lock(); // 支持过期解锁功能, 10秒钟以后自动解锁,无需调用unlock方法手动解锁 fairLock.lock(10, TimeUnit.SECONDS); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = fairLock.tryLock(100, 10, TimeUnit.SECONDS); } catch (InterruptedException e) { e.printStackTrace(); } finally { fairLock.unlock(); } }
Redisson also provides asynchronous execution methods for distributed reentrant fair locks:
RLock fairLock = redisson.getFairLock("anyLock"); fairLock.lockAsync(); fairLock.lockAsync(10, TimeUnit.SECONDS); Future<Boolean> res = fairLock.tryLockAsync(100, 10, TimeUnit.SECONDS);
3. Interlock (MultiLock)
Redisson's RedissonMultiLock object can associate multiple RLock objects into an interlock, and each RLock object instance can come from a different Redisson Example.
public void testMultiLock(RedissonClient redisson1,RedissonClient redisson2, RedissonClient redisson3){ RLock lock1 = redisson1.getLock("lock1"); RLock lock2 = redisson2.getLock("lock2"); RLock lock3 = redisson3.getLock("lock3"); RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3); try { // 同时加锁:lock1 lock2 lock3, 所有的锁都上锁成功才算成功。 lock.lock(); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } }
4. Red Lock (RedLock)
Redisson’s RedissonRedLock object implements the locking algorithm introduced by Redlock . This object can also be used to associate multiple RLock objects as a red lock. Each RLock object instance can come from a different Redisson instance.
public void testRedLock(RedissonClient redisson1,RedissonClient redisson2, RedissonClient redisson3){ RLock lock1 = redisson1.getLock("lock1"); RLock lock2 = redisson2.getLock("lock2"); RLock lock3 = redisson3.getLock("lock3"); RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3); try { // 同时加锁:lock1 lock2 lock3, 红锁在大部分节点上加锁成功就算成功。 lock.lock(); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } }
5. Read-write lock (ReadWriteLock)
Redisson’s distributed reentrant read-write lock RReadWriteLock ,Java objects implement the java.util.concurrent.locks.ReadWriteLock interface. It also supports automatic expiration unlocking. This object allows multiple read locks at the same time, but can have at most one write lock.
RReadWriteLock rwlock = redisson.getLock("anyRWLock"); // 最常见的使用方法 rwlock.readLock().lock(); // 或 rwlock.writeLock().lock(); // 支持过期解锁功能 // 10秒钟以后自动解锁 // 无需调用unlock方法手动解锁 rwlock.readLock().lock(10, TimeUnit.SECONDS); // 或 rwlock.writeLock().lock(10, TimeUnit.SECONDS); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = rwlock.readLock().tryLock(100, 10, TimeUnit.SECONDS); // 或 boolean res = rwlock.writeLock().tryLock(100, 10, TimeUnit.SECONDS); ... lock.unlock();
6. Semaphore
Redisson's distributed semaphore (Semaphore) Java object RSemaphore Adopts an interface and usage similar to java.util.concurrent.Semaphore.
RSemaphore semaphore = redisson.getSemaphore("semaphore"); semaphore.acquire(); //或 semaphore.acquireAsync(); semaphore.acquire(23); semaphore.tryAcquire(); //或 semaphore.tryAcquireAsync(); semaphore.tryAcquire(23, TimeUnit.SECONDS); //或 semaphore.tryAcquireAsync(23, TimeUnit.SECONDS); semaphore.release(10); semaphore.release(); //或 semaphore.releaseAsync();
7. Expirable semaphore (PermitExpirableSemaphore)
Redisson’s expirable semaphore (PermitExpirableSemaphore) ) Based on the RSemaphore object, an expiration time is added to each signal. Each signal can be identified by an independent ID, and it can only be released by submitting this ID.
RPermitExpirableSemaphore semaphore = redisson.getPermitExpirableSemaphore("mySemaphore"); String permitId = semaphore.acquire(); // 获取一个信号,有效期只有2秒钟。 String permitId = semaphore.acquire(2, TimeUnit.SECONDS); // ... semaphore.release(permitId);
8. Locking (CountDownLatch)
Redisson's distributed locking (CountDownLatch) Java object RCountDownLatch adopts Similar interface and usage to java.util.concurrent.CountDownLatch.
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch"); latch.trySetCount(1); latch.await(); // 在其他线程或其他JVM里 RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch"); latch.countDown();
Summary
The above is the detailed content of Example of Java implementing redisson distributed lock. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.

PHP is suitable for web development and content management systems, and Python is suitable for data science, machine learning and automation scripts. 1.PHP performs well in building fast and scalable websites and applications and is commonly used in CMS such as WordPress. 2. Python has performed outstandingly in the fields of data science and machine learning, with rich libraries such as NumPy and TensorFlow.
