Java method of reading and writing data in Parquet format
本篇文章主要介绍了java 读写Parquet格式的数据的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
本文介绍了java 读写Parquet格式的数据,分享给大家,具体如下:
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.util.Random; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.log4j.Logger; import org.apache.parquet.example.data.Group; import org.apache.parquet.example.data.GroupFactory; import org.apache.parquet.example.data.simple.SimpleGroupFactory; import org.apache.parquet.hadoop.ParquetReader; import org.apache.parquet.hadoop.ParquetReader.Builder; import org.apache.parquet.hadoop.ParquetWriter; import org.apache.parquet.hadoop.example.GroupReadSupport; import org.apache.parquet.hadoop.example.GroupWriteSupport; import org.apache.parquet.schema.MessageType; import org.apache.parquet.schema.MessageTypeParser; public class ReadParquet { static Logger logger=Logger.getLogger(ReadParquet.class); public static void main(String[] args) throws Exception { // parquetWriter("test\\parquet-out2","input.txt"); parquetReaderV2("test\\parquet-out2"); } static void parquetReaderV2(String inPath) throws Exception{ GroupReadSupport readSupport = new GroupReadSupport(); Builder<Group> reader= ParquetReader.builder(readSupport, new Path(inPath)); ParquetReader<Group> build=reader.build(); Group line=null; while((line=build.read())!=null){ Group time= line.getGroup("time", 0); //通过下标和字段名称都可以获取 /*System.out.println(line.getString(0, 0)+"\t"+ line.getString(1, 0)+"\t"+ time.getInteger(0, 0)+"\t"+ time.getString(1, 0)+"\t");*/ System.out.println(line.getString("city", 0)+"\t"+ line.getString("ip", 0)+"\t"+ time.getInteger("ttl", 0)+"\t"+ time.getString("ttl2", 0)+"\t"); //System.out.println(line.toString()); } System.out.println("读取结束"); } //新版本中new ParquetReader()所有构造方法好像都弃用了,用上面的builder去构造对象 static void parquetReader(String inPath) throws Exception{ GroupReadSupport readSupport = new GroupReadSupport(); ParquetReader<Group> reader = new ParquetReader<Group>(new Path(inPath),readSupport); Group line=null; while((line=reader.read())!=null){ System.out.println(line.toString()); } System.out.println("读取结束"); } /** * * @param outPath 输出Parquet格式 * @param inPath 输入普通文本文件 * @throws IOException */ static void parquetWriter(String outPath,String inPath) throws IOException{ MessageType schema = MessageTypeParser.parseMessageType("message Pair {\n" + " required binary city (UTF8);\n" + " required binary ip (UTF8);\n" + " repeated group time {\n"+ " required int32 ttl;\n"+ " required binary ttl2;\n"+ "}\n"+ "}"); GroupFactory factory = new SimpleGroupFactory(schema); Path path = new Path(outPath); Configuration configuration = new Configuration(); GroupWriteSupport writeSupport = new GroupWriteSupport(); writeSupport.setSchema(schema,configuration); ParquetWriter<Group> writer = new ParquetWriter<Group>(path,configuration,writeSupport); //把本地文件读取进去,用来生成parquet格式文件 BufferedReader br =new BufferedReader(new FileReader(new File(inPath))); String line=""; Random r=new Random(); while((line=br.readLine())!=null){ String[] strs=line.split("\\s+"); if(strs.length==2) { Group group = factory.newGroup() .append("city",strs[0]) .append("ip",strs[1]); Group tmpG =group.addGroup("time"); tmpG.append("ttl", r.nextInt(9)+1); tmpG.append("ttl2", r.nextInt(9)+"_a"); writer.write(group); } } System.out.println("write end"); writer.close(); } }
说下schema(写Parquet格式数据需要schema,读取的话"自动识别"了schema)
/* * 每一个字段有三个属性:重复数、数据类型和字段名,重复数可以是以下三种: * required(出现1次) * repeated(出现0次或多次) * optional(出现0次或1次) * 每一个字段的数据类型可以分成两种: * group(复杂类型) * primitive(基本类型) * 数据类型有 * INT64, INT32, BOOLEAN, BINARY, FLOAT, DOUBLE, INT96, FIXED_LEN_BYTE_ARRAY */
这个repeated和required 不光是次数上的区别,序列化后生成的数据类型也不同,比如repeqted修饰 ttl2 打印出来为 WrappedArray([7,7_a]) 而 required修饰 ttl2 打印出来为 [7,7_a] 除了用MessageTypeParser.parseMessageType类生成MessageType 还可以用下面方法
(注意这里有个坑--spark里会有这个问题--ttl2这里 as(OriginalType.UTF8) 和 required binary city (UTF8)作用一样,加上UTF8,在读取的时候可以转为StringType,不加的话会报错 [B cannot be cast to java.lang.String )
/*MessageType schema = MessageTypeParser.parseMessageType("message Pair {\n" + " required binary city (UTF8);\n" + " required binary ip (UTF8);\n" + "repeated group time {\n"+ "required int32 ttl;\n"+ "required binary ttl2;\n"+ "}\n"+ "}");*/ //import org.apache.parquet.schema.Types; MessageType schema = Types.buildMessage() .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("city") .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("ip") .repeatedGroup().required(PrimitiveTypeName.INT32).named("ttl") .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("ttl2") .named("time") .named("Pair");
解决 [B cannot be cast to java.lang.String 异常:
1.要么生成parquet文件的时候加个UTF8
2.要么读取的时候再提供一个同样的schema类指定该字段类型,比如下面:
maven依赖(我用的1.7)
<dependency> <groupId>org.apache.parquet</groupId> <artifactId>parquet-hadoop</artifactId> <version>1.7.0</version> </dependency>
The above is the detailed content of Java method of reading and writing data in Parquet format. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.
