In-depth understanding of Java hashCode() method
Java.lang.Object There is a hashCode() and an equals() method, these two methods play a pivotal role in software design. Override these two methods in some classes to complete some important functions. This article describes why hashCode() is used, how to use it, and some other extensions. Reading this article requires basic knowledge of hash algorithms and basic Java collection knowledge. This article is an entry-level explanation for beginners. If you are an expert, please click the X in the upper right corner after reading this to avoid wasting your time^_^.
WHY hashCode()?
The elements in the setSet are unordered and non-repeatable. So what is the basis for judging whether two elements are repeated? "To compare whether objects are equal, of course use Object.equal()," said a certain monkey. However, there are a large number of objects in the Set, and the number of comparisons of object elements later added to the Set will gradually increase, which greatly reduces the efficiency of the program. Java uses a hash algorithm (also called a hash algorithm) to solve this problem. The object (or data) is directly mapped to an address according to a specific algorithm, and the access efficiency of the object is greatly improved. In this way, when an element (object) needs to be added to a Set containing a large number of elements, the hashCode() of this element is first called, and the actual storage location of this element can be located at once. If there is no element at this location, it means that this object When it is stored in the collection Set for the first time, the object is stored directly at this location; if there is an object at this location, call equal() to see if the two objects are equal. If they are equal, the element will be discarded and not stored. If they are not equal, the element will not be stored. Hashed to other addresses.
HOW use hashCode()?
The Java language has five requirements that must be followed when designing equal().
symmetry. If a.equal(b) returns "true", then b.equal(a) must also return "true".
Reflective. a.equal(a) must return "true".
Transitiveness. If a.equal(b) returns "true", and b.equal(c) returns "true", then c.equal(a) must return "true".
Consistent sex. If a.equal(b) returns "true", as long as the contents of a and b remain unchanged, a.equal(b) must return "true" no matter how many times it is repeated.
Any situation Below, a.equals(null) always returns "false"; a.equals (an object of a different type from a) always returns "false".
- If a.equals(b) returns "true", then the hashCode() of a and b must be equal.
- If a.equals(b) returns "false", then the hashCode() of a and b may be equal or different.
public class Employee { int employeeId; String name; // other methods would be in here @Override public boolean equals(Object obj) { if(obj==this) return true; Employee emp=(Employee)obj; if(employeeId.equals(emp.getEmployeeId()) && name==emp.getName()) return true; return false; } @Override public int hashCode() { int hash = 1; hash = hash * 17 + employeeId; hash = hash * 31 + name.hashCode(); return hash; } }
public int hashCode() { int h = hash; if (h == 0) { int off = offset; char val[] = value; int len = count; for (int i = 0; i < len; i++) { h = 31*h + val[off++]; } hash = h; } return h; }
s[0]31s[i] is the i-th character of string, and n is the length of String. So why is 31 used here instead ofn-1 + s[1]31n-2 + … + s[ n-1]
other numbers?
31 is an odd prime number. If the multiplier is an even number and the multiplication overflows, the information will be lost because it is multiplied by 2 Equivalent to thebit shift operation. The benefits of using prime numbers are not immediately obvious, but it is customary to use prime numbers to calculate hash results. 31 has a good feature, which is to use shifting and subtraction instead of multiplication, which can get better performance: 31*i==(i<<5)-i. Today's VM can automatically complete this optimization. (From Effective Java)
hasCode() of Object class
hashCode() in Object class is a Native method. How to call the Native method?public native int hashCode();
static JNINativeMethod methods[] = { {"hashCode", "()I", (void *)&JVM_IHashCode}, {"wait", "(J)V", (void *)&JVM_MonitorWait}, {"notify", "()V", (void *)&JVM_MonitorNotify}, {"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll}, {"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone}, };
The above is the detailed content of In-depth understanding of Java hashCode() method. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.
