Home Java javaTutorial Java multi-threading to achieve simultaneous output

Java multi-threading to achieve simultaneous output

Jan 05, 2017 pm 04:58 PM
java multithreading

A classic interview question: Two threads print AB respectively. Thread A prints A and thread B prints B. Each prints 10 times to make it appear ABABABABA..

package com.shangshe.path;
 
public class ThreadAB {
 
  /**
  * @param args
  */
  public static void main(String[] args) {
     
    final Print business = new Print();
     
    new Thread(new Runnable() {
      public void run() {
        for(int i=0;i<10;i++) {
          business.print_A();
        }
      }
    }).start();
     
    new Thread(new Runnable() {
      public void run() {
        for(int i=0;i<10;i++) {
          business.print_B();
        }
      }
    }).start();
     
  }
}
class Print {
   
  private boolean flag = true;
   
  public synchronized void print_A () {
    while(!flag) {
      try {
        this.wait();
      } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
      }
    }
    System.out.print("A");
    flag = false;
    this.notify();
  }
   
  public synchronized void print_B () {
    while(flag) {
      try {
        this.wait();
      } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
      }
    }
    System.out.print("B");
    flag = true;
    this.notify();
  }
}
Copy after login

From the above For example, we can design a program with 3 threads or even n threads. The example given below is 3 threads, printing A, B, C 10 times respectively, so that the effect of ABCABC.. appears

public class ThreadABC {
 
  /**
   * @param args
   */
  public static void main(String[] args) {
     
    final Print business = new Print();
     
    new Thread(new Runnable() {
      public void run() {
        for(int i=0;i<100;i++) {
          business.print_A();
        }
      }
    }).start();
     
    new Thread(new Runnable() {
      public void run() {
        for(int i=0;i<100;i++) {
          business.print_B();
        }
      }
    }).start();
     
    new Thread(new Runnable() {
      public void run() {
        for(int i=0;i<100;i++) {
          business.print_C();
        }
      }
    }).start();
     
  }
}
class Print {
   
  private boolean should_a = true;
  private boolean should_b = false;
  private boolean should_c = false;
   
  public synchronized void print_A () {
    while(should_b || should_c) {
      try {
        this.wait();
      } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
      }
    }
    System.out.print("A");
    should_a = false;
    should_b = true;
    should_c = false;
    this.notifyAll();
  }
   
  public synchronized void print_B () {
    while(should_a || should_c) {
      try {
        this.wait();
      } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
      }
    }
    System.out.print("B");
    should_a = false;
    should_b = false;
    should_c = true;
    this.notifyAll();
  }
   
  public synchronized void print_C () {
    while(should_a || should_b) {
      try {
        this.wait();
      } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
      }
    }
    System.out.print("C");
    should_a = true;
    should_b = false;
    should_c = false;
    this.notifyAll();
  }
}
Copy after login

Once again proves the importance of software engineering; in multi-threaded programs, it should be said that in programs, we should put those business logic codes into the same class to make them high cohesion and low coupling


For more articles related to Java multi-threading and simultaneous output, please pay attention to the PHP Chinese website!


Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Java development optimization method for file reading multi-thread acceleration performance Java development optimization method for file reading multi-thread acceleration performance Jun 30, 2023 pm 10:54 PM

In Java development, file reading is a very common and important operation. As your business grows, so do the size and number of files. In order to increase the speed of file reading, we can use multi-threading to read files in parallel. This article will introduce how to optimize file reading multi-thread acceleration performance in Java development. First, before reading the file, we need to determine the size and quantity of the file. Depending on the size and number of files, we can set the number of threads reasonably. Excessive number of threads may result in wasted resources,

Detailed explanation of usage scenarios and functions of volatile keyword in Java Detailed explanation of usage scenarios and functions of volatile keyword in Java Jan 30, 2024 am 10:01 AM

Detailed explanation of the role and application scenarios of the volatile keyword in Java 1. The role of the volatile keyword In Java, the volatile keyword is used to identify a variable that is visible between multiple threads, that is, to ensure visibility. Specifically, when a variable is declared volatile, any modifications to the variable are immediately known to other threads. 2. Application scenarios of the volatile keyword The status flag volatile keyword is suitable for some status flag scenarios, such as a

Explore the working principles and characteristics of java multithreading Explore the working principles and characteristics of java multithreading Feb 21, 2024 pm 03:39 PM

Explore the working principles and characteristics of Java multithreading Introduction: In modern computer systems, multithreading has become a common method of concurrent processing. As a powerful programming language, Java provides a rich multi-threading mechanism, allowing programmers to better utilize the computer's multi-core processor and improve program running efficiency. This article will explore the working principles and characteristics of Java multithreading and illustrate it with specific code examples. 1. The basic concept of multi-threading Multi-threading refers to executing multiple threads at the same time in a program, and each thread processes different

Exception handling in Java multi-threaded environment Exception handling in Java multi-threaded environment May 01, 2024 pm 06:45 PM

Key points of exception handling in a multi-threaded environment: Catching exceptions: Each thread uses a try-catch block to catch exceptions. Handle exceptions: print error information or perform error handling logic in the catch block. Terminate the thread: When recovery is impossible, call Thread.stop() to terminate the thread. UncaughtExceptionHandler: To handle uncaught exceptions, you need to implement this interface and assign it to the thread. Practical case: exception handling in the thread pool, using UncaughtExceptionHandler to handle uncaught exceptions.

Detailed explanation of Java multi-threaded concurrency lock Detailed explanation of Java multi-threaded concurrency lock Apr 11, 2024 pm 04:21 PM

The Java concurrency lock mechanism ensures that shared resources are accessed by only one thread in a multi-threaded environment. Its types include pessimistic locking (acquire the lock and then access) and optimistic locking (check for conflicts after accessing). Java provides built-in concurrency lock classes such as ReentrantLock (mutex lock), Semaphore (semaphore) and ReadWriteLock (read-write lock). Using these locks can ensure thread-safe access to shared resources, such as ensuring that when multiple threads access the shared variable counter at the same time, only one thread updates its value.

Java Multithreading Performance Optimization Guide Java Multithreading Performance Optimization Guide Apr 11, 2024 am 11:36 AM

The Java Multithreading Performance Optimization Guide provides five key optimization points: Reduce thread creation and destruction overhead Avoid inappropriate lock contention Use non-blocking data structures Leverage Happens-Before relationships Consider lock-free parallel algorithms

Multi-thread safety issues in Java - solutions to java.lang.ThreadDeath Multi-thread safety issues in Java - solutions to java.lang.ThreadDeath Jun 25, 2023 am 11:22 AM

Java is a programming language widely used in modern software development, and its multi-threaded programming capabilities are also one of its greatest advantages. However, due to the concurrent access problems caused by multi-threading, multi-thread safety issues often occur in Java. Among them, java.lang.ThreadDeath is a typical multi-thread security issue. This article will introduce the causes and solutions of java.lang.ThreadDeath. 1. Reasons for java.lang.ThreadDeath

Java multi-thread debugging technology revealed Java multi-thread debugging technology revealed Apr 12, 2024 am 08:15 AM

Multi-threaded debugging technology answers: 1. Challenges in multi-threaded code debugging: The interaction between threads leads to complex and difficult-to-track behavior. 2. Java multi-thread debugging technology: line-by-line debugging thread dump (jstack) monitor entry and exit events thread local variables 3. Practical case: use thread dump to find deadlock, use monitor events to determine the cause of deadlock. 4. Conclusion: The multi-thread debugging technology provided by Java can effectively solve problems related to thread safety, deadlock and contention.

See all articles