Encapsulation method of common modules in Node.js
Module loading and execution are packaged in Node.js so that the variables in the module file are in a closure and will not pollute global variables or conflict with others.
For front-end modules, our developers usually place the module code in a closure to avoid conflicts with others.
How to encapsulate modules common to Node.js and front-end, we can refer to Underscore.js implementation, which is a functional function module common to Node.js and front-end, view the code:
// Create a safe reference to the Underscore object for use below. var _ = function(obj) { if (obj instanceof _) return obj; if (!(this instanceof _)) return new _(obj); this._wrapped = obj; }; // Export the Underscore object for **Node.js**, with // backwards-compatibility for the old `require()` API. If we're in // the browser, add `_` as a global object via a string identifier, // for Closure Compiler "advanced" mode. if (typeof exports !== 'undefined') { if (typeof module !== 'undefined' && module.exports) { exports = module.exports = _; } exports._ = _; } else { root._ = _; }
Pass judgment Whether exports exists determines whether to assign the local variable _ to exports. It is backward compatible with the old require() API. If in the browser, a string identifier "_" is used as a global object; the complete closure is as follows:
(function() { // Baseline setup // -------------- // Establish the root object, `window` in the browser, or `exports` on the server. var root = this; // Create a safe reference to the Underscore object for use below. var _ = function(obj) { if (obj instanceof _) return obj; if (!(this instanceof _)) return new _(obj); this._wrapped = obj; }; // Export the Underscore object for **Node.js**, with // backwards-compatibility for the old `require()` API. If we're in // the browser, add `_` as a global object via a string identifier, // for Closure Compiler "advanced" mode. if (typeof exports !== 'undefined') { if (typeof module !== 'undefined' && module.exports) { exports = module.exports = _; } exports._ = _; } else { root._ = _; } }).call(this);
A closure is constructed through the function definition. call(this) calls the function under this object to avoid internal variables from contaminating the global scope. In the browser, this points to the global object (window object), and the "_" variable is assigned to the global object "root._" for external calls.
Lo-Dash, which is similar to Underscore.js, also uses a similar solution, but is compatible with AMD module loading:
;(function() { /** Used as a safe reference for `undefined` in pre ES5 environments */ var undefined; /** Used to determine if values are of the language type Object */ var objectTypes = { 'boolean': false, 'function': true, 'object': true, 'number': false, 'string': false, 'undefined': false }; /** Used as a reference to the global object */ var root = (objectTypes[typeof window] && window) || this; /** Detect free variable `exports` */ var freeExports = objectTypes[typeof exports] && exports && !exports.nodeType && exports; /** Detect free variable `module` */ var freeModule = objectTypes[typeof module] && module && !module.nodeType && module; /** Detect the popular CommonJS extension `module.exports` */ var moduleExports = freeModule && freeModule.exports === freeExports && freeExports; /*--------------------------------------------------------------------------*/ // expose Lo-Dash var _ = runInContext(); // some AMD build optimizers, like r.js, check for condition patterns like the following: if (typeof define == 'function' && typeof define.amd == 'object' && define.amd) { // Expose Lo-Dash to the global object even when an AMD loader is present in // case Lo-Dash was injected by a third-party script and not intended to be // loaded as a module. The global assignment can be reverted in the Lo-Dash // module by its `noConflict()` method. root._ = _; // define as an anonymous module so, through path mapping, it can be // referenced as the "underscore" module define(function() { return _; }); } // check for `exports` after `define` in case a build optimizer adds an `exports` object else if (freeExports && freeModule) { // in Node.js or RingoJS if (moduleExports) { (freeModule.exports = _)._ = _; } // in Narwhal or Rhino -require else { freeExports._ = _; } } else { // in a browser or Rhino root._ = _; } }.call(this));
Let’s take a look Look at the main code of the encapsulation closure of Moment.js:
(function (undefined) { var moment; // check for nodeJS var hasModule = (typeof module !== 'undefined' && module.exports); /************************************ Exposing Moment ************************************/ function makeGlobal(deprecate) { var warned = false, local_moment = moment; /*global ender:false */ if (typeof ender !== 'undefined') { return; } // here, `this` means `window` in the browser, or `global` on the server // add `moment` as a global object via a string identifier, // for Closure Compiler "advanced" mode if (deprecate) { this.moment = function () { if (!warned && console && console.warn) { warned = true; console.warn( "Accessing Moment through the global scope is " + "deprecated, and will be removed in an upcoming " + "release."); } return local_moment.apply(null, arguments); }; } else { this['moment'] = moment; } } // CommonJS module is defined if (hasModule) { module.exports = moment; makeGlobal(true); } else if (typeof define === "function" && define.amd) { define("moment", function (require, exports, module) { if (module.config().noGlobal !== true) { // If user provided noGlobal, he is aware of global makeGlobal(module.config().noGlobal === undefined); } return moment; }); } else { makeGlobal(); } }).call(this);
From the above examples, we can see that when encapsulating modules common to Node.js and front-end, you can use the following logic:
if (typeof exports !== "undefined") { exports.** = **; } else { this.** = **; }
That is, if the exports object exists, the local variables are loaded on the exports object; if they do not exist, they are loaded on the global object. If you add the compatibility of the ADM specification, then add one more judgment:
if (typeof define === "function" && define.amd){}
For more articles related to the encapsulation method of general modules in Node.js, please pay attention to the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.
