Python SQLite3数据库操作类分享
接触Python时间也不是很长的,最近有个项目需要分析数据,于是选用Python为编程语言,除了语言特性外主要还是看重Python对于SQLite3数据库良好的支持能力了,因为需要灵活处理大量的中间数据。
刚开始一些模块我还乐此不疲的写SQL语句,后来渐渐厌倦了,回想到以前捣鼓C#的时候利用反射初步构建了个SQL查询构造器,直到发现linq,于是放弃了这个计划,当然微软后来又推出了Entity Framework,这些都是后话了,而且现在我对微软的东西兴趣不是很大的,好了,扯多了,下面继续正文。
对了,再扯一句,优秀的博客程序Drupal也使用了类似的查询构造器进行数据库查询,避免直接写SQL语句,另外这样做的一点点好处就是,可以一定程度的屏蔽平台相关性,对于数据库迁移还是有帮助的。
不过我今天介绍的数据库辅助类查询构造器是个很简单的东东,甚至只限于SQLite数据库,如果有童鞋感兴趣可以完善下,我目前只要操作SQLite顺手就可以了,对于比较大的数据库应用就直接上ORM吧。
先看代码:
import sqlite3
# ***************************************************
# *
# * Description: Python操作SQLite3数据库辅助类(查询构造器)
# * Author: wangye
# *
# ***************************************************
def _wrap_value(value):
return repr(value)
def _wrap_values(values):
return list(map(_wrap_value, values))
def _wrap_fields(fields):
for key,value in fields.items():
fields[key] = _wrap_value(value)
return fields
def _concat_keys(keys):
return "[" + "],[".join(keys) + "]"
def _concat_values(values):
return ",".join(values)
def _concat_fields(fields, operator = (None, ",")):
if operator:
unit_operator, group_operator = operator
# fields = _wrap_fields(fields)
compiled = []
for key,value in fields.items():
compiled.append("[" + key + "]")
if unit_operator:
compiled.append(unit_operator)
compiled.append(value)
compiled.append(group_operator)
compiled.pop() # pop last group_operator
return " ".join(compiled)
class DataCondition(object):
"""
本类用于操作SQL构造器辅助类的条件语句部分
例如:
DataCondition(("=", "AND"), id = 26)
DataCondition(("=", "AND"), True, id = 26)
"""
def __init__(self, operator = ("=", "AND"), ingroup = True, **kwargs):
"""
构造方法
参数:
operator 操作符,分为(表达式操作符, 条件运算符)
ingroup 是否分组,如果分组,将以括号包含
kwargs 键值元组,包含数据库表的列名以及值
注意这里的等于号不等于实际生成SQL语句符号
实际符号是由operator[0]控制的
例如:
DataCondition(("=", "AND"), id = 26)
(id=26)
DataCondition((">", "OR"), id = 26, age = 35)
(id>26 OR age>35)
DataCondition(("LIKE", "OR"), False, name = "John", company = "Google")
name LIKE 'John' OR company LIKE "Google"
"""
self.ingroup = ingroup
self.fields = kwargs
self.operator = operator
def __unicode__(self):
self.fields = _wrap_fields(self.fields)
result = _concat_fields(self.fields, self.operator)
if self.ingroup:
return "(" + result + ")"
return result
def __str__(self):
return self.__unicode__()
def toString(self):
return self.__unicode__()
class DataHelper(object):
"""
SQLite3 数据查询辅助类
"""
def __init__(self, filename):
"""
构造方法
参数: filename 为SQLite3 数据库文件名
"""
self.file_name = filename
def open(self):
"""
打开数据库并设置游标
"""
self.connection = sqlite3.connect(self.file_name)
self.cursor = self.connection.cursor()
return self
def close(self):
"""
关闭数据库,注意若不显式调用此方法,
在类被回收时也会尝试调用
"""
if hasattr(self, "connection") and self.connection:
self.connection.close()
def __del__(self):
"""
析构方法,做一些清理工作
"""
self.close()
def commit(self):
"""
提交事务
SELECT语句不需要此操作,默认的execute方法的
commit_at_once设为True会隐式调用此方法,
否则就需要显示调用本方法。
"""
self.connection.commit()
def execute(self, sql = None, commit_at_once = True):
"""
执行SQL语句
参数:
sql 要执行的SQL语句,若为None,则调用构造器生成的SQL语句。
commit_at_once 是否立即提交事务,如果不立即提交,
对于非查询操作,则需要调用commit显式提交。
"""
if not sql:
sql = self.sql
self.cursor.execute(sql)
if commit_at_once:
self.commit()
def fetchone(self, sql = None):
"""
取一条记录
"""
self.execute(sql, False)
return self.cursor.fetchone()
def fetchall(self, sql = None):
"""
取所有记录
"""
self.execute(sql, False)
return self.cursor.fetchall()
def __concat_keys(self, keys):
return _concat_keys(keys)
def __concat_values(self, values):
return _concat_values(values)
def table(self, *args):
"""
设置查询的表,多个表名用逗号分隔
"""
self.tables = args
self.tables_snippet = self.__concat_keys(self.tables)
return self
def __wrap_value(self, value):
return _wrap_value(value)
def __wrap_values(self, values):
return _wrap_values(values)
def __wrap_fields(self, fields):
return _wrap_fields(fields)
def __where(self):
# self.condition_snippet
if hasattr(self, "condition_snippet"):
self.where_snippet = " WHERE " + self.condition_snippet
def __select(self):
template = "SELECT %(keys)s FROM %(tables)s"
body_snippet_fields = {
"tables" : self.tables_snippet,
"keys" : self.__concat_keys(self.body_keys),
}
self.sql = template % body_snippet_fields
def __insert(self):
template = "INSERT INTO %(tables)s (%(keys)s) VALUES (%(values)s)"
body_snippet_fields = {
"tables" : self.tables_snippet,
"keys" : self.__concat_keys(list(self.body_fields.keys())),
"values" : self.__concat_values(list(self.body_fields.values()))
}
self.sql = template % body_snippet_fields
def __update(self):
template = "UPDATE %(tables)s SET %(fields)s"
body_snippet_fields = {
"tables" : self.tables_snippet,
"fields" : _concat_fields(self.body_fields, ("=",","))
}
self.sql = template % body_snippet_fields
def __delete(self):
template = "DELETE FROM %(tables)s"
body_snippet_fields = {
"tables" : self.tables_snippet
}
self.sql = template % body_snippet_fields
def __build(self):
{
"SELECT": self.__select,
"INSERT": self.__insert,
"UPDATE": self.__update,
"DELETE": self.__delete
}[self.current_token]()
def __unicode__(self):
return self.sql
def __str__(self):
return self.__unicode__()
def select(self, *args):
self.current_token = "SELECT"
self.body_keys = args
self.__build()
return self
def insert(self, **kwargs):
self.current_token = "INSERT"
self.body_fields = self.__wrap_fields(kwargs)
self.__build()
return self
def update(self, **kwargs):
self.current_token = "UPDATE"
self.body_fields = self.__wrap_fields(kwargs)
self.__build()
return self
def delete(self, *conditions):
self.current_token = "DELETE"
self.__build()
#if *conditions:
self.where(*conditions)
return self
def where(self, *conditions):
conditions = list(map(str, conditions))
self.condition_snippet = " AND ".join(conditions)
self.__where()
if hasattr(self, "where_snippet"):
self.sql += self.where_snippet
return self
下面举几个例子供大家参考吧:
db = DataHelper("/home/wangye/sample.db3")
db.open() # 打开数据库
db.execute("""
CREATE TABLE [staffs] (
[staff_id] INTEGER PRIMARY KEY AUTOINCREMENT,
[staff_name] TEXT NOT NULL,
[staff_cardnum] TEXT NOT NULL,
[staff_reserved] INTEGER NOT NULL
)
""") # 直接执行SQL语句,注意这里commit_at_once默认为True
db.table("staffs").insert(staff_name="John", staff_cardnum="1001", staff_reserved=0)
# 插入一条记录
rs = db.table("staffs").select("staff_id", "staff_name").fetchall()
# 直接取出所有staff_id和staff_name
rs = db.table("staffs").select("staff_name").where(DataCondition(("=", "AND"), id = 1)).fetchone()
# 取一条staff_id为1的staff_name
rs = db.table("staffs").select("staff_name").where(DataCondition(("# 取一条id小于100并且staff_reserved为1的staff_name记录
db.close() # 关闭数据库
目前还没有让其支持星号(*)操作符,另外在多表同名列操作方面处理得也不是很好,这个只用于日常简单的脚本操作,最好不要用于生产环境,因为可能有未知问题。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
